精英家教网 > 高中数学 > 题目详情

【题目】据气象局统计,某市2019年从11日至130日这30天里有26天出现雾霾天气.国际上通常用环境空气质量指数(AQI)来描述污染状况,下表是某气象观测点记录的连续4天里,该市AQI指数与当天的空气水平可见度的情况.

AQI指数

900

700

300

100

空气水平可见度

0.5

3.5

6.5

9.5

1)设,根据表中的数据,求出关于的回归方程;

2)若某天该市AQT指数,那么当天空气水平可见度大约为多少?

附:参考数据:.

参考公式:线性回归力程中,,其中为样本平均数.

【答案】12

【解析】

1)根据题意求出代入中得值,再由计算出 即可求出关于的回归方程;

2)把,代入线性回归方程中即可.

1)依题意有:

于是:

故:关于的线性回归方程为.

2)当时,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右顶点为,椭圆上任意一点,满足,且椭圆过点.

(1)求椭圆的标准方程;

(2)设是轨迹上的两个动点,线段的中点在直线 (为参数)上,线段的中垂线与交于两点,是否存在点,使以为直径的圆经过点,若存在,求出点坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列有关命题的说法正确的是(

A.命题“若,则0”的否命题为“若,则0

B.命题“函数fx)=(a1xR上的增函数”的否定是“函数fx)=(a1xR上的减函数”

C.命题“在ABC中,若sinAsinB,则AB”的逆否命题为真命题

D.命题“若x2,则x23x+20”的逆命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面ABCD

求证:平面PAC

若侧棱PC上的点F满足,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国仓储指数是反映仓储行业经营和国内市场主要商品供求状况与变化趋势的已套指数体系.如图所示的折线图是2017年和2018年的中国仓储指数走势情况.根据该折线图,下列结论中不正确的是(  )

A. 20181月至4月的仓储指数比2017年同期波动性更大

B. 这两年的最大仓储指数都出现在4月份

C. 2018年全年仓储指数平均值明显低于2017

D. 2018年各仓储指数的中位数与2017年各仓储指数中位数差异明显

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个不同的极值点x1x2,且x1x2

1)求实数a的取值范围;

2)求证:x1x2a2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了变废为宝,节约资源,新上了一个从生活垃圾中提炼生物柴油的项目.经测算该项目月处理成本(元)与月处理量(吨)之间的函数关系可以近似地表示为:

,且每处理一吨生活垃圾,可得到能利用的生物柴油价值为200元,若该项目不获利,政府将给予补贴.

1)当时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损?

2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在椭圆,直线x,y轴分别交于A,B两点,0为坐标原点,且△OAB 的面积的最小值为

(1)求椭圆的离心率;

(2) 设点C、D、F2分别为椭圆的上、下顶点以及右焦点,E 为线段OD 的中点,直线F2E 与椭圆 相交于M、N 两点,若,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线x轴交于AB两点,点Q的坐标为.

1)是否存在b,使得,如果存在求出b值;如果不存在,说明理由;

2)过ABQ三点的圆面积最小时,求圆的方程.

查看答案和解析>>

同步练习册答案