精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
.
x
1
x
-21
.
(x>0)的值域为集合A,
(1)若全集U=R,求CUA;
(2)对任意x∈(0,
1
2
],不等式f(x)+a≥0恒成立,求实数a的范围;
(3)设P是函数f(x)的图象上任意一点,过点P分别向直线y=x和y轴作垂线,垂足分别为A、B,求
PA
PB
的值.
(1)由已知得,x>0,则f(x)=x+
2
x
≥2
2
                       …(1分)
当且仅当x=
2
x
时,即x=
2
等号成立,
∴A=[2
2
,+∞)                                       …(3分)
所以,CUA=(-∞,2
2
)                                …(4分)
(2)由题得 a≥-(x+
2
x
)                                      …(5分)
函数y=-(x+
2
x
)在(0,
1
2
]的最大值为-
9
2
                       …(9分)
∴a≥-
9
2
                                                      …(10分)
(3)设P(x0,x0+
2
x0
),则直线PA的方程为
y-(x0+
2
x0
)=-(x-x0),
即y=-x+2x0+
2
x0
…(11分)
y=x
y=-x+2x0+
2
x0
  得A(x0+
2
x0
,2x0+
1
x0
)                         …(13分)
又B(0,x0+
2
x0
),…(14分)
所以
PA
=(
1
x0
,-
1
x0
),
PB
=(-x,0),
故 
PA
PB
=
1
x0
(-x0)=-1     …(16分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案