A. | $\frac{1}{3}$ | B. | $\frac{2}{5}$ | C. | $\frac{\sqrt{5}}{5}$ | D. | $\frac{\sqrt{5}}{3}$ |
分析 取椭圆的左焦点为F1,连接AF1,依题意可得$∠{F}_{1}A{F}_{2}=9{0}^{0}$.△F1AF2∽△MOF2,⇒$\frac{A{F}_{1}}{A{F}_{2}}=\frac{OM}{O{F}_{2}}=\frac{1}{2}$,由$A{{F}_{1}}^{2}+A{{F}_{2}}^{2}={F}_{1}{{F}_{2}}^{2}$⇒$(\frac{2a}{3})^{2}+(\frac{4a}{3})^{2}=(2c)^{2}$
即可求解.
解答 解:如图,取椭圆的左焦点为F1,连接AF1,
依题意:|OA|=|OF2|=2|OM|=c,可得$∠{F}_{1}A{F}_{2}=9{0}^{0}$.
△F1AF2∽△MOF2,⇒$\frac{A{F}_{1}}{A{F}_{2}}=\frac{OM}{O{F}_{2}}=\frac{1}{2}$,
∵AF1+AF2=2a,∴$A{F}_{1}=\frac{2a}{3},A{F}_{2}=\frac{4a}{3}$.
由$A{{F}_{1}}^{2}+A{{F}_{2}}^{2}={F}_{1}{{F}_{2}}^{2}$⇒$(\frac{2a}{3})^{2}+(\frac{4a}{3})^{2}=(2c)^{2}$
$\frac{{c}^{2}}{{a}^{2}}=\frac{5}{9}$,∴$e=\frac{c}{a}=\frac{\sqrt{5}}{3}$.
则椭圆C的离心率为:$\frac{\sqrt{5}}{3}$,
故选:D
点评 本题考查椭圆的离心率,考查椭圆定义的运用,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | b>c>a | B. | c>b>a | C. | c>a>b | D. | b>a>c |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | f(x)=|2x-1| | B. | f(x)=ex | C. | f(x)=x2+x+1 | D. | f(x)=sinx |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{5}$ | B. | -$\frac{1}{5}$ | C. | $\frac{7}{5}$ | D. | -$\frac{7}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com