精英家教网 > 高中数学 > 题目详情
5.对一个质点在平面直角坐标系中的运动观察了5次,得到数据如下:(174,175),(176,175),(176,176),(176,177),(178,177),建立的回归直线方程为y=kx+88,其对应的直线的倾斜角为β,则sin2β+2cos2β=(  )
A.$\frac{1}{2}$B.1C.2D.3

分析 利用回归直线方程过样本中心点,求出k,可得tanβ=$\frac{1}{2}$,利用sin2β+2cos2β=$\frac{2tanβ}{1+ta{n}^{2}β}$+$\frac{2(1-ta{n}^{2}β)}{1+ta{n}^{2}β}$,即可得出结论.

解答 解:由题意,$\overline{x}$=$\frac{1}{5}$×(174+176+176+176+178)=176,
$\overline{y}$=$\frac{1}{5}$×(175+175+176+177+177)=176,
∵回归直线方程为y=kx+88,
∴176=176k+88,
∴k=$\frac{1}{2}$,
∵直线的倾斜角为β,
∴tanβ=$\frac{1}{2}$,
∴sin2β+2cos2β=$\frac{2tanβ}{1+ta{n}^{2}β}$+$\frac{2(1-ta{n}^{2}β)}{1+ta{n}^{2}β}$
=$\frac{1}{1+\frac{1}{4}}$+$\frac{2(1-\frac{1}{4})}{1+\frac{1}{4}}$=$\frac{4}{5}$+$\frac{6}{5}$=2,
故选:C.

点评 本题考查回归直线方程,考查三角函数知识的运用,正确转化是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.如图,在菱形ABCD中,∠BAD=60°,AB=2$\sqrt{3}$,E为对角线BD的中点,将△ABD沿BD折起到△PBD的位置,若∠PEC=120°,则三棱锥P-BCD的外接球的表面积为(  )
A.28πB.32πC.16πD.12π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设命题p:2x2-3x+1≤0,命题q:x2-(2a+1)x+a(a+1)≤0,若p是q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若曲线y=cosx在x=$\frac{π}{6}$处的切线与直线y=ax-1垂直,则实数a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若数列{an}的通项公式为an=2n+1,则a6=(  )
A.13B.14C.15D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.方程4x-9×2x+8=0的解是0或3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x),(x∈R)的图象上任意一点(x0,y0)处的切线方程为y=(x0-1)(x02-4)(x-x0)+f(x0),那么f(x)的单调减区间为(-∞,-2)∪(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,若tan$\frac{A+B}{2}$=2sinC且AB=3,则△ABC的周长的取值范围(4,5].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某空间几何体的正视图、俯视图如图所示,则该几何体的表面积为(  )
A.$\frac{27\sqrt{3}}{2}$B.$\frac{27\sqrt{35}}{2}$C.$\frac{27}{2}$($\sqrt{3}$+$\sqrt{35}$)D.$\frac{27}{2}$($\sqrt{35}$-$\sqrt{3}$)

查看答案和解析>>

同步练习册答案