A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | 3 |
分析 利用回归直线方程过样本中心点,求出k,可得tanβ=$\frac{1}{2}$,利用sin2β+2cos2β=$\frac{2tanβ}{1+ta{n}^{2}β}$+$\frac{2(1-ta{n}^{2}β)}{1+ta{n}^{2}β}$,即可得出结论.
解答 解:由题意,$\overline{x}$=$\frac{1}{5}$×(174+176+176+176+178)=176,
$\overline{y}$=$\frac{1}{5}$×(175+175+176+177+177)=176,
∵回归直线方程为y=kx+88,
∴176=176k+88,
∴k=$\frac{1}{2}$,
∵直线的倾斜角为β,
∴tanβ=$\frac{1}{2}$,
∴sin2β+2cos2β=$\frac{2tanβ}{1+ta{n}^{2}β}$+$\frac{2(1-ta{n}^{2}β)}{1+ta{n}^{2}β}$
=$\frac{1}{1+\frac{1}{4}}$+$\frac{2(1-\frac{1}{4})}{1+\frac{1}{4}}$=$\frac{4}{5}$+$\frac{6}{5}$=2,
故选:C.
点评 本题考查回归直线方程,考查三角函数知识的运用,正确转化是关键.
科目:高中数学 来源: 题型:选择题
A. | 28π | B. | 32π | C. | 16π | D. | 12π |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{27\sqrt{3}}{2}$ | B. | $\frac{27\sqrt{35}}{2}$ | C. | $\frac{27}{2}$($\sqrt{3}$+$\sqrt{35}$) | D. | $\frac{27}{2}$($\sqrt{35}$-$\sqrt{3}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com