【题目】甘肃省瓜州县自古就以盛产“美瓜”而名扬中外,生产的“瓜州蜜瓜”有4个系列30多个品种,质脆汁多,香甜可口,清爽宜人,含糖量达14%-19%,是消暑止渴的佳品,有诗赞曰:冰泉浸绿玉,霸刀破黄金;凉冷消晚署,清甘洗渴心,调查表明,蜜瓜的甜度与海拔高度、日照时长、温差有极强的相关性,分别用表示蜜瓜甜度与海拔高度、日照时长、温差的相关程度,并对它们进行量化:0表示一般,1表示良,2表示优,再用综合指标的值评定蜜瓜的等级,若,则为一级;若,则为二级;若,则为三级.近年来,周边各省也开始发展蜜瓜种植,为了了解目前蜜瓜在周边各省的种植情况,研究人员从不同省份随机抽取了10块蜜瓜种植地,得到如下结果:
(1)若有蜜瓜种植地110块,试估计等级为一级的蜜瓜种植地的数量;
(2)在所取样本的二级和三级蜜瓜种植地中任取2块, 表示取到三级蜜瓜种植地的数量,求随机变量的分布列及数学期望.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系内,动点与两定点, 连线的斜率之积为.
(1)求动点的轨迹的方程;
(2)设点, 是轨迹上相异的两点.
(Ⅰ)过点, 分别作抛物线的切线, , 与两条切线相交于点,证明: ;
(Ⅱ)若直线与直线的斜率之积为,证明: 为定值,并求出这个定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AB=2,点E、F分别在边AB、DC上,M为AD的中点,且 =0,则△MEF的面积的取值范围为( )
A.
B.[1,2]
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某车间共有名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.
(Ⅰ) 根据茎叶图计算样本均值;
(Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间名工人中有几名优秀工人;
(Ⅲ) 从该车间名工人中,任取2人,求恰有1名优秀工人的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某车间共有名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.
(Ⅰ) 根据茎叶图计算样本均值;
(Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间名工人中有几名优秀工人;
(Ⅲ) 从该车间名工人中,任取2人,求恰有1名优秀工人的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(且为常数).
(1)当时,讨论函数在的单调性;
(2)设可求导数,且它的导函数仍可求导数,则再次求导所得函数称为原函数的二阶函数,记为,利用二阶导函数可以判断一个函数的凹凸性.一个二阶可导的函数在区间上是凸函数的充要条件是这个函数在的二阶导函数非负.
若在不是凸函数,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的焦点、在轴上,且椭圆经过,过点的直线与交于点,与抛物线: 交于、两点,当直线过时的周长为.
(Ⅰ)求的值和的方程;
(Ⅱ)以线段为直径的圆是否经过上一定点,若经过一定点求出定点坐标,否则说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,动点, 分别在轴, 轴上运动, , 为平面上一点, ,过点作平行于轴交的延长线于点.
(Ⅰ)求点的轨迹曲线的方程;
(Ⅱ)过点作轴的垂线,平行于轴的两条直线, 分别交曲线于, 两点(直线不过),交于, 两点.若线段中点的轨迹方程为,求与的面积之比.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com