精英家教网 > 高中数学 > 题目详情

【题目】在如图三棱锥ABCD中,BDCDEF分别为棱BCCD上的点,且BD∥平面AEFAE⊥平面BCD

1)求证:平面AEF⊥平面ACD

2)若的中点,求直线与平面所成角的正弦值.

【答案】1)见解析(2

【解析】

(1)证明,进而可得即可证明平面AEF⊥平面ACD

(2) 分别以x,y,z轴建立空间直角坐标系,再根据构造的直角三角形的关系求得每边的长度,再利用空间向量求解线面夹角即可.

解:(1)证明:因为,,

所以,因为,所以

又因为,,

所以,而,

所以,又,

所以

2)解:设直线与平面所成交的余弦值为

连接,在中,,,

,所以,且,,

又因为,,,

所以,.在中,,,所以

如图,以点为坐标原点,分别以x,y,z轴建立空间直角坐标系,各点坐标为,,,,

因为,的中点,所以的中点,即,

设平面的法向量,

,,

,即,

整理得,令,得,,则

因为,所以,

故直线与平面所成交的正弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的右顶点为,过点作直线与圆相切,与椭圆交于另一点,与右准线交于点.设直线的斜率为.

1)用表示椭圆的离心率;

2)若,求椭圆的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形是边长为2的正方形,的中点,点上,平面的延长线上,且.

(1)证明:平面.

(2)过点的平行线,与直线相交于点,点的中点,求到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)记表示中的最小值,设,若函数至少有三个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若有两个极值点,求实数的取值范围;

2)已知的三个零点,且.时,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年庆祝中华人民共和国成立70周年阅兵式彰显了中华民族从站起来、富起来迈向强起来的雄心壮志.阅兵式规模之大、类型之全均创历史之最,编组之新、要素之全彰显强军成就.装备方阵堪称强军利刃”“强国之盾,见证着人民军队迈向世界一流军队的坚定步伐.此次大阅兵不仅得到了全中国人的关注,还得到了无数外国人的关注.某单位有10位外国人,其中关注此次大阅兵的有8位,若从这10位外国人中任意选取3位做一次采访,则被采访者中至少有2位关注此次大阅兵的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设三棱锥的每个顶点都在球的球面上,是面积为的等边三角形,,且平面平面.

1)确定的位置(需要说明理由),并证明:平面平面.

2)与侧面平行的平面与棱分别交于,求四面体的体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了减轻家庭困难的高中学生的经济负担,让更多的孩子接受良好的教育,国家施行高中生国家助学金政策,普通高中国家助学金平均资助标准为每生每年1500元,具体标准由各地结合实际在1000元至3000元范围内确定,可以分为两或三档.各学校积极响应政府号召,通过各种形式宣传国家助学金政策.为了解某高中学校对国家助学金政策的宣传情况,拟采用随机抽样的方法抽取部分学生进行采访调查.

1)若该高中学校有2000名在校学生,编号分别为0001000200032000,请用系统抽样的方法,设计一个从这2000名学生中抽取50名学生的方案.(写出必要的步骤)

2)该校根据助学金政策将助学金分为3档,1档每年3000元,2档每年2000元,3档每年1000元,某班级共评定出31档,22档,13档,若从该班获得助学金的学生中选出2名写感想,求这2名同学不在同一档的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆柱底面半径为1,高为是圆柱的一个轴截面,动点从点出发沿着圆柱的侧面到达点,其距离最短时在侧面留下的曲线如图所示.将轴截面绕着轴逆时针旋转后,边与曲线相交于点.

1)求曲线的长度;

2)当时,求点到平面的距离.

查看答案和解析>>

同步练习册答案