精英家教网 > 高中数学 > 题目详情

【题目】已知等比数列{an}的前n项和Sn=2n+r.
(1)求实数r的值和{an}的通项公式;
(2)若数列{bn}满足b1=1,bn+1﹣bn=log2an+1 , 求bn

【答案】
(1)解:∵Sn=2n+r,

∴a1=S1=2+r,a2=S2﹣S1=2,a3=S3﹣S2=4.

∵数列{an}是等比数列,

,即22=4(2+r),

∴r=﹣1.

∴数列{an}是以1为首项,2为公比的等比数列,

∴an=2n1(n∈N*).


(2)解:∵

∴bn+1﹣bn=log2an+1=n.

当n≥2时,bn=(bn﹣bn1)+(bn1﹣bn2)+…+(b2﹣b1)+b1

=(n﹣1)+(n﹣2)+…+(2﹣1)+1

= +1

= +1.

又n=1符合上式,

∴bn= +1


【解析】(1)利用递推式与等比数列的通项公式即可得出;(2)bn+1﹣bn=log2an+1=n.利用“累加求和”可得bn , 再利用等比数列的前n项和公式即可得出.
【考点精析】根据题目的已知条件,利用数列的前n项和的相关知识可以得到问题的答案,需要掌握数列{an}的前n项和sn与通项an的关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线y=x+b与圆x2+y2﹣2x+4y﹣4=0相交于A,B两点,O为坐标原点,若 =0,则实数b的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x),f′(x)是其导数,且满足f(x)+f′(x)>2,ef(1)=2e+4,则不等式exf(x)>4+2ex(其中e为自然对数的底数)的解集为(
A.(1,+∞)
B.(﹣∞,0)∪(1,+∞)
C.(﹣∞,0)∪(0,+∞)
D.(﹣∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={(x,y)|x2+(y+1)2≤1},B={(x,y)| x+y=4m},命题P:A∩B=,命题q:直线 + =1在两坐标轴上的截距为正.
(1)若命题P为真命题,求实数m的取值范围;
(2)若“p∨q”为真,“p∧q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一壁画,最高点A处离地面AO=4m,最低点B处离地面BO=2m,观赏它的C点在过墙角O点与地面成30°角的射线上.

(1)设点C到墙的距离为x,当x= m时,求tanθ的值;
(2)问C点离墙多远时,视角θ最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂的A、B、C三个不同车间生产同一产品的数量(单位:件)如表所示.质检人员用分层抽样的方法从这些产品中共抽取6件样品进行检测.

车间

A

B

C

数量

50

150

100

(1)求这6件样品中来自A、B、C各车间产品的数量;
(2)若在这6件样品中随机抽取2件进行进一步检测,求这2件商品来自相同车间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB∥CD,∠ABC=90°,且CD=2,AB=BC=PA=1,PD=
(1)求三棱锥A﹣PCD的体积;
(2)问:棱PB上是否存在点E,使得PD∥平面ACE?若存在,求出 的值,并加以证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正方体ABCD﹣A1B1C1D1中,点M是平面A1B1C1D1内一点,且BM∥平面ACD1 , 则tan∠DMD1的最大值为(

A.
B.1
C.2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点,直线与动直线的交点为,线段的中垂线与动直线的交点为

1求动点的轨迹的方程;

2过动点作曲线的两条切线,切点分别为 ,求证: 的大小为定值.

查看答案和解析>>

同步练习册答案