(08年上海卷理)方程x2+x-1=0的解可视为函数y=x+的图像与函数y=的图像交点的横坐标,若x4+ax-4=0的各个实根x1,x2,…,xk (k≤4)所对应的点(xi ,)(i=1,2,…,k)均在直线y=x的同侧,则实数a的取值范围是 .
科目:高中数学 来源: 题型:
(08年上海卷理)某海域内有一孤岛,岛四周的海平面(视为平面)上有一浅水区(含边界),其边界是长轴长为2a,短轴长为2b的椭圆,已知岛上甲、乙导航灯的海拔高度分别为h1、h2,且两个导航灯在海平面上的投影恰好落在椭圆的两个焦点上,现有船只经过该海域(船只的大小忽略不计),在船上测得甲、乙导航灯的仰角分别为θ1、θ2,那么船只已进入该浅水区的判别条件是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年上海卷理)(6’+9’)已知双曲线,为上的任意点。
(1)求证:点到双曲线的两条渐近线的距离的乘积是一个常数;
(2)设点的坐标为,求的最小值;
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年上海卷理)(3’+5’+8’)设P(a,b)(b≠0)是平面直角坐标系xOy中的点,l是经过原点与点(1,b)的直线,记Q是直线l与抛物线x2=2py(p≠0)的异于原点的交点
⑴ 若a=1,b=2,p=2,求点Q的坐标
⑵ 若点P(a,b)(ab≠0)在椭圆上,,
求证:点Q落在双曲线4x2-4y2=1上
⑶ 若动点P(a,b)满足ab≠0,,若点Q始终落在一条关于x轴对称的抛物线上,试问动点P的轨迹落在哪种二次曲线上,并说明理由
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com