精英家教网 > 高中数学 > 题目详情
3.原命题“若xy=1,则x,y互为倒数”,则(  )
A.逆命题与逆否命题真,否命题假B.逆命题假,否命题和逆否命题真
C.逆命题和否命题真,逆否命题假D.逆命题、否命题、逆否命题都真

分析 由原命题是真命题,可判断逆命题是真命题,由于逆命题和否命题互为逆否命题,逆否命题具有相同的真假性,故可判断否命题,原命题与它的逆否命题具有相同的真假,故可判断逆否命题,从而可得答案.

解答 解:原命题“若xy=1,则x,y互为倒数”正确,
原命题的逆命题为:“若x,y互为倒数,则xy=1正确,
由于逆命题和否命题互为逆否命题,逆否命题具有相同的真假性,故否命题正确,
原命题与它的逆否命题具有相同的真假,故逆否命题正确.
故选:D.

点评 本题考查命题的四个命题的真假,这种题目只要判断其中两个命题的真假就可以,由于原命题与它的逆否命题具有相同的真假,否命题与逆命题具有相同的真假,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.如图所示,AB是⊙O的直径,弦CD⊥AB于点P,CD=10cm,AP:PB=1:5,那么⊙O的半径是(  )
A.5$\sqrt{2}$cmB.4$\sqrt{3}$cmC.3$\sqrt{5}$cmD.2$\sqrt{6}$cm

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{{1-{2^x}}}{{{2^x}+1}}$.
(1)分别求出f(1),f(a)的值.
(2)判断函数f(x)的奇偶性并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若不等式$\left\{\begin{array}{l}{x-y+5≥0}\\{0≤x≤3}\\{y≥a}\end{array}\right.$表示的平面区域是一个三角形,则a的取值范围是(  )
A.(3,5)B.(5,7)C.[5,8]D.[5,8)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知命题P:关于x的不等式x2+2ax+4>0的解集为R,命题Q:函数f(x)=(5-2a)x为增函数.若P∨Q为真,P∧Q为假,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.各项为正数的等比数列{an}中,a5与a15的等比中项为2$\sqrt{2}$,则log2a4+log2a16=(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.p:|x-4|>2;q:x>1,则“¬p”是“q”的(  )条件.
A.充分不必要B.充分必要
C.必要不充分D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知tan60°=m,则cos120゜的值是(  )
A.$\frac{1}{{\sqrt{1+{m^2}}}}$B.$\frac{1-{m}^{2}}{1+{m}^{2}}$C.$\frac{m}{{\sqrt{1+{m^2}}}}$D.-$\frac{m}{{\sqrt{1+{m^2}}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若对任意x∈(0,$\frac{1}{2}$),恒有4x<logax(a>0且a≠1),则实数a的取值范围是[$\frac{\sqrt{2}}{2}$,1).

查看答案和解析>>

同步练习册答案