精英家教网 > 高中数学 > 题目详情
5.根据数列的前几项,写出下列各数列的一个通项公式:
 (1)$\frac{1}{2}$,$\frac{4}{5}$,$\frac{9}{10}$,$\frac{16}{17}$,…;
(2)1,-$\frac{1}{3}$,$\frac{1}{7}$,-$\frac{1}{15}$,$\frac{1}{31}$,…;
(3)1,$\frac{3}{2}$,$\frac{1}{3}$,$\frac{5}{4}$,$\frac{1}{5}$,$\frac{7}{6}$,…

分析 直接依据所给数列的项的特征和项与项之间的关心进行求解即可.

解答 解:依据数列的项的特征,得到如下通项公式:
(1)an=$\frac{{n}^{2}}{{n}^{2}+1}$
(2)an=(-1)n+1$\frac{1}{{2}^{n}-1}$
(3)an=$\left\{\begin{array}{l}{\frac{1}{n},n为奇数}\\{\frac{2n-1}{n},n为偶数}\end{array}\right.$.

点评 本题重点考查了数列的通项公式的确定方法、可以通过观察法进行确定其通项公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.设函数f(x)的定义域为R,对任意x1,x2∈R,恒有f(x1+x2)=f(x1)+f(x2)成立.
(1)求证:f(x)是奇函数;
(2)若x>0时,f(x)<0,证明:f(x)是R上的减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数y=$\frac{5-x}{2x+5}$,x∈(-∞,-3]的值域为[-8,-$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=x+$\frac{1}{x}$的奇偶性是奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$,x∈R,求f(x)+f($\frac{1}{x}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设f(x)=x2+$\frac{16}{x}$,用定义证明f(x)在[2,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知不等式ax2+bx+1>0的解集为(-∞,1)∪(3,+∞),不等式x2+bx+a<0的解集为A,集合B={x||x-t|$≤\frac{1}{2}$,x∈R}.
(1)求集合A;
(2)若A∩B=∅,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$(lo{g}_{\frac{1}{2}}x)^{2}$-$\frac{1}{2}$$lo{g}_{\frac{1}{2}}x$+5,求在区间[2,4]上f(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=$\frac{2x+1}{x-3}$的图象关于点(3,2)对称.

查看答案和解析>>

同步练习册答案