精英家教网 > 高中数学 > 题目详情
已知函数f(x)=|x-a|x+b(a,b∈R),给出下列命题:
(1)当a=0时,f(x)的图象关于点(0,b)成中心对称;
(2)当x>a时,f(x)是递增函数;
(3)当0≤x≤a时,f(x)的最大值为
a24
+b.
其中正确的序号是
 
分析:(1)把a=0代入f(x),设M(x,y)是函数上的任意一点,验证关于(0,b)对称的点N(-x,2b-x)在函数f(x)的图形上.
(2)当x>a时,f(x)=x2-ax+b,结合二次函数在(a.+∞)的图象可判断
(3)当0≤x≤a时,f(x)=-x2+ax+b,结合二次函数在[0,a]的图象判断
解答:解:(1)a=0,f(x)=x|x|+b,设M(x,y)是函数图象上的任意一定,则关于(0,b)对称的点N(x′,y′),则
x=-x
y=2b-y
 代入可得①正确
(2)x>a,f(x)=x2-ax+b,当a>0时,在(a,+∞)递增,当a<0时,在(a,+∞)先减后增,②错
(3)0≤x≤a,f(x)=-x2+ax+b,函数的对称轴x=
a
2

a>0时,a>
a
2
,函数在(0,
a
2
)
递增,在(
a
2
,a)
上递减,函数在x=
a
2
取最大值
a2
4
+b
③正确
故答案为:(1)(3)
点评:本题综合考查了函数的对称性、函数的单调性、二次函数的在闭区间上的最值的求解,解决本题的关键是要熟练掌握函数的性质,灵活运用性质进行解题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案