精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
3
a2x3-ax2+
2
3
,g(x)=-ax+1,其中a>0.
(1)若函数f(x)的图象与函数g(x)的图象有公共点,且在公共点处有相同的切线,试求实数a的值;
(2)在区间(0,
1
2
]上至少存在一个实数x0,使f(x0)>g(x0)成立,试求实数a的取值范围.
分析:(1)分别求出f(x)和g(x)的导函数,设出两函数图象的公共点M的坐标,由两函数图象在公共点处有相同的切线,把M的横坐标代入两导函数中求出的导函数值相等得到一个关系式,记作①,把M的横坐标代入两函数解析式中得到的函数值相等,记作②,把①化简后解出a等于一个关系式,记作③,把②化简后,记作④,把③代入④消去a得到关于点M横坐标的方程,求出方程的解即可得到点M横坐标的值,把横坐标的值代入③即可求出a的值;
(2)设F(x)=f(x)-g(x),求出导函数,由x的范围得到导函数值大雨0,即F(x)为增函数,根据闭区间x的范围,求出F(x)的最大值,根据最大值大于0列出关于a的不等式,求出不等式的解集即可得到a的取值范围.
解答:解:(1)设函数f(x)的图象与函数g(x)的图象的公共点为M(x0,y0),
由题意得:
f′(x0)=g′(x0)
f(x0)=g(x0)
,即
a2
x
2
0
-2ax0=-a①
1
3
a2
x
3
0
-
ax
2
0
+
2
3
=-ax0+1②

由①得a(ax02-2x0+1)=0,
∵a>0,且x0≠0,
∴a=
2x0-1
x
2
0
.③
由②得
1
3
a2x03-ax02+ax0-
1
3
=0.④
把③代入④,得
1
3
(
2x0-1
x
2
0
)2
x
3
0
-
2x0-1
x
2
0
 
x
2
0
+
2x0-1
x
2
0
 
•x0-
1
3
=0,
化简得x02-2x0+1=0,解得x0=1.
当x0=1时,a=
2×1-1
12
=1,
于是,所求实数a的值为1.
(2)设F(x)=f(x)-g(x)=
1
3
a2x3-ax2+ax-
1
3
(x∈(0,
1
2
]),
对F(x)求导,得F′(x)=a2x2-2ax+a=a2x2+a(1-2x)>0(a>0),
∴F(x)在(0,
1
2
]上为增函数,则F(x)max=F(
1
2
).
依题意,只需F(x)max>0,即
1
3
a2×
1
8
-a×
1
4
+a×
1
2
-
1
3
>0,
∴a2+6a-8>0,解得a>-3+
17
或a<-3-
17
(舍去).
于是,所求实数a的取值范围是(-3+
17
,+∞).
点评:此题考查学生会利用导数求曲线上过某点切线方程的斜率,会利用导函数的正负判断函数的单调性,会利用导数求闭区间上函数的最大值,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),则实数x的取值范围是(  )
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1,x∈Q
0,x∉Q
,则f[f(π)]=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1-x
ax
+lnx(a>0)

(1)若函数f(x)在[1,+∞)上为增函数,求实数a的取值范围;
(2)当a=1时,求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)当a=1时,求证对任意大于1的正整数n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+logax(a>0,a≠1),满足f(9)=3,则f-1(log92)的值是(  )

查看答案和解析>>

同步练习册答案