精英家教网 > 高中数学 > 题目详情

【题目】如图,四面体ABCD中,O、E分别是BD、BC的中点,.

(1)求证:平面BCD;

(2)求异面直线AB与CD所成角的余弦值;

(3)求点E到平面ACD的距离。

【答案】1)见解析(23

【解析】

1)连接OC,由BODOABAD,知AOBD,由BODOBCCD,知COBD.在△AOC中,由题设知AC2,故AO2+CO2AC2,由此能够证明AO⊥平面BCD

2)取AC的中点M,连接OMMEOE,由EBC的中点,知MEABOEDC,故直线OEEM所成的锐角就是异面直线ABCD所成的角.在△OME中,,由此能求出异面直线ABCD所成角大小的余弦;

3)设点E到平面ACD的距离为h.在△ACD中,,故,由AO1,知,由此能求出点E到平面ACD的距离.

1)证明:连接OC,∵BODOABAD,∴AOBD

BODOBCCD,∴COBD

在△AOC中,由题设知AC2

AO2+CO2AC2

∴∠AOC90°,即AOOC

AOBDBDOCO

AO⊥平面BCD

2)解:取AC的中点M,连接OMMEOE,由EBC的中点,

MEABOEDC

∴直线OEEM所成的锐角就是异面直线ABCD所成的角.

在△OME中,

OM是直角△AOC斜边AC上的中线,∴

∴异面直线ABCD所成角大小的余弦为

3)解:设点E到平面ACD的距离为h

在△ACD中,

AO1

∴点E到平面ACD的距离为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,对于任意的 ,都有, 当时,,且.

( I ) 求的值;

(II) 当时,求函数的最大值和最小值;

(III) 设函数,判断函数g(x)最多有几个零点,并求出此时实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,圆的极坐标方程为.

(1)求直线和圆的普通方程;

(2)已知直线上一点,若直线与圆交于不同两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:

日期

1月10日

2月10日

3月10日

4月10日

5月10日

6月10日

昼夜温差

x (℃)

10

11

13

12

8

6

就诊人数

y()

22

25

29

26

16

12

该兴趣小组确定的研究方案是:先用2、3、4、5月的4组数据求线性回归方程,再用1月和6月的2组数据进行检验.

(1)请根据2、3、4、5月的数据,求出y关于x的线性回归方程

(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?

(参考公式:

参考数据:11×25+13×29+12×26+8×16=1092,112+132+122+82=498.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数满足,且为偶函数,若内单调递减,则下面结论正确的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2-12x-14y+60=0及其上一点A(2,4).

(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;

(2)设平行于OA的直线l与圆M相交于B,C两点,且BC=OA,

求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】实数对满足不等式组则目标函数当且仅当时取最大值,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,在区间上有最大值,有最小值,设

1)求的值;

2)不等式时恒成立,求实数的取值范围;

3)若方程有三个不同的实数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,,平面ABC外有一点,点P到角的两边ACBC的距离都等于,则PC与平面ABC所成角的正切值为__________.

查看答案和解析>>

同步练习册答案