精英家教网 > 高中数学 > 题目详情

【题目】二维空间中圆的一维测度(周长)l=2πr,二维测度(面积)S=πr2;三维空间中球的二维测度(表面积)S=4πr2 , 三维测度(体积)V= πr3;四维空间中“超球”的三维测度V=8πr3 , 则猜想其四维测度W=

【答案】2πr4
【解析】解:∵二维空间中圆的一维测度(周长)l=2πr,二维测度(面积)S=πr2 , 观察发现S′=l
三维空间中球的二维测度(表面积)S=4πr2 , 三维测度(体积)V= πr3 , 观察发现V′=S
∴四维空间中“超球”的三维测度V=8πr3 , 猜想其四维测度W,则W′=V=8πr3
∴W=2πr4
所以答案是:2πr4
【考点精析】解答此题的关键在于理解类比推理的相关知识,掌握根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数).

(Ⅰ)若,恒有成立,求实数的取值范围;

(Ⅱ)若函数有两个相异极值点 ,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 是偶函数,g(x)=t2x+4,
(1)求a的值;
(2)当t=﹣2时,求f(x)<g(x)的解集;
(3)若函数f(x)的图象总在g(x)的图象上方,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fn(x)= x3 (n+1)x2+x(n∈N*),数列{an}满足an+1=f'n(an),a1=3.
(1)求a2 , a3 , a4
(2)根据(1)猜想数列{an}的通项公式,并用数学归纳法证明;
(3)求证: + +…+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】不等式(x+2)(x﹣1)>0的解集为(
A.{x|x<﹣2或x>1}
B.{x|﹣2<x<1}
C.{x|x<﹣1或x>2}
D.{x|﹣1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn,数列{bn}{cn}满足 (n+1) bnan+1,(n+2) cn,其中n∈N*.

(1)若数列{an}是公差为2的等差数列,求数列{cn}的通项公式;

(2)若存在实数λ,使得对一切n∈N*,有bn≤λ≤cn,求证:数列{an}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (a、b为常数),且f(1)= ,f(0)=0.
(1)求函数f(x)的解析式;
(2)判断函数f(x)在定义域上的奇偶性,并证明;
(3)对于任意的x∈[0,2],f(x)(2x+1)<m4x恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的参数方程是 (α为参数),直线l的参数方程为 (t为参数),
(1)求曲线C与直线l的普通方程;
(2)若直线l与曲线C相交于P,Q两点,且|PQ|= ,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】集合A= ,若BA求m的取值范围.

查看答案和解析>>

同步练习册答案