精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中已知椭圆过点,其左、右焦点分别为,离心率为.

1)求椭圆E的方程;

2)若AB分别为椭圆E的左、右顶点,动点M满足,且MA交椭圆E于点P.

i)求证:为定值;

ii)设PB与以PM为直径的圆的另一交点为Q,问:直线MQ是否过定点,并说明理由.

【答案】(1) (2) i)证明见解析,定值为4 ii)直线过定点.

【解析】

1)由题意得离心率公式和点满足的方程,结合椭圆的的关系,可得,进而得到椭圆方程;
2)(i)设,求得直线MA的方程,代入椭圆方程,解得点P的坐标,再由向量的数量积的坐标表示,计算即可得证;
ii)直线MQ过定点O00).先求得PB的斜率,再由圆的性质可得MQPB,求出MQ的斜率,再求直线MQ的方程,即可得到定点.

解:(1)易得

解得

所以椭圆E的方程为

2)设

①易得直线的方程为:

代入椭圆得,

得,,从而

所以示

②直线过定点,理由如下:

依题意,

得,

的方程为:,即

所以直线过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知是椭圆的左右顶点,点为椭圆上一点,点关于轴的对称点为,且.

1)若椭圆经过圆的圆心,求椭圆的方程;

2)在(1)的条件下,若过点的直线与椭圆相交于不同的两点,设为椭圆上一点,且满足为坐标原点),当时,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某生物探测器在水中逆流行进时,所消耗的能量为EcvnT,其中v为行进时相对于水的速度,T为行进时的时间(单位:h),c为常数,n为能量次级数,如果水的速度为4km/h,该生物探测器在水中逆流行进200km

1)求T关于v的函数关系式;

2)①当能量次级数为2时,求探测器消耗的最少能量;

②当能量次级数为3时,试确定v的大小,使该探测器消耗的能量最少.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某工厂生产的某种产品中抽取1000件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:

(1)求这1000件产品质量指标值的样本平均数和样本方差(同一组数据用该区间的中点值作代表)

(2)由频率分布直方图可以认为,这种产品的质量指标值服从正态分布,其中以近似为样本平均数近似为样本方差

(ⅰ)利用该正态分布,求

(ⅱ)某用户从该工厂购买了100件这种产品,记表示这100件产品中质量指标值为于区间(127.6,140)的产品件数,利用(ⅰ)的结果,求

附:.若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人沿固定路线开车上班,沿途共有个红绿灯,他对过去个工作日上班途中的路况进行了统计,得到了如表的数据:

上班路上遇见的红灯数

天数

若一路绿灯,则他从家到达公司只需用时分钟,每遇一个红灯,则会多耗时分钟,以频率作为概率的估计值

1)试估计他平均每天上班需要用时多少分钟?

2)若想以不少于的概率在早上点前(含点)到达公司,他最晚何时要离家去公司?

3)公司规定,员工应早上点(含点)前打卡考勤,否则视为迟到,每迟到一次,会被罚款.因某些客观原因,在接下来的个工作日里,他每天早上只能从家出发去公司,求他因迟到而被罚款的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准:用水量不超过a的部分按照平价收费,超过a的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了100位居民某年的月均用水量(单位:吨),制作了频率分布直方图,

(Ⅰ)用该样本估计总体:

1)估计该市居民月均用水量的平均数;

2)如果希望86%的居民每月的用水量不超出标准,则月均用水量a的最低标准定为多少吨?

(Ⅱ)若将频率视为概率,现从该市某大型生活社区随机调查3位居民的月均用水量,其中月均用水量不超过2.5吨的人数为X,求X的分布列和均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角ABC所对的边长分别为abc,且acosB+bcosA2ccosB

1)若a3,求c的值;

2)若,求fA)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某互联网公司为了确定下一季度的前期广告投入计划,收集了近个月广告投入量单位:万元)和收益单位:万元)的数据如下表

月份

广告投入量

收益

他们分别用两种模型①分别进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图及一些统计量的值

Ⅰ)根据残差图,比较模型①②的拟合效果,应选择哪个模型?并说明理由

Ⅱ)残差绝对值大于的数据被认为是异常数据,需要剔除

ⅰ)剔除异常数据后求出(Ⅰ)中所选模型的回归方程

ⅱ)若广告投入量时,该模型收益的预报值是多少

附:对于一组数据,……,其回归直线的斜率和截距的最小二乘估计分别为

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了了解高一新生是否愿意参加军训,随机调查了80名新生,得到如下2×2列联表

愿意

不愿意

合计

x

5

M

y

z

40

合计

N

25

80

1)写出表中xyzMN的值,并判断是否有99.9%的把握认为愿意参加军训与性别有关;

2)在被调查的不愿意参加军训的学生中,随机抽出3人,记这3人中男生的人数为ξ,求ξ的分布列和数学期望.

参考公式:

附:

PK2k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.01

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案