精英家教网 > 高中数学 > 题目详情

【题目】下列命题中:

①已知点,动点满足,则点的轨迹是一个圆;

②已知,则动点的轨迹是双曲线;

③两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1

④在平面直角坐标系内,到点和直线的距离相等的点的轨迹是抛物线;

正确的命题是_________

【答案】①③

【解析】

根据轨迹方程的求解,以及双曲线的定义,相关系数的性质,结合选项进行逐一分析即可.

①:设动点,由,故可得

整理得:,且,故该方程表示圆,则①正确;

②:根据双曲线的定义,

则动点的轨迹只表示双曲线的左支,故②错误;

③:根据相关系数的性质,相关性越强,则相关系数的绝对值就越接近于1,故③正确;

④:因为点在直线上,

故满足题意的点的轨迹为过点且垂直于直线的直线,故④错误.

故答案为:①③.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,是边长为1的正三角形,点P所在的平面内,且a为常数),下列结论中正确的是( )

A.时,满足条件的点P有且只有一个

B.时,满足条件的点P有三个

C.时,满足条件的点P有无数个

D.a为任意正实数时,满足条件的点总是有限个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是奇函数的导函数,,当时,,则使得成立的的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某足球俱乐部对“一线队引援”和“青训”投入分别规划如下:2018年,该俱乐部在“一线队引援”投入资金为16000万元,“青训”投入资金为1000万元.计划每年“一线队引援”投入比上一年减少一半,“青训”投入比上一年增加一倍.

1)请问哪一年该俱乐部“一线队引援”和“青训”投入总和最少?

2)从2018年起包括2018该俱乐部从哪一年开始“一线队引援”和“青训”总投入之和不低于62000万元?(总投入是指各年投入之和)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在长方体中,已知

1)求:凸多面体的体积;

2)若为线段的中点,求点到平面的距离;

3)若点分别在棱上滑动,且线段的长恒等于,线段的中点为

①试证:点必落在过线段的中点且平行于底面的平面上;

②试求点的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为了提高企业利润,从2014年至2018年每年都对生产环节的改进进行投资,投资金额(单位:万元)与年利润增长量(单位:万元)的数据如表:

年份

2014

2015

2016

2017

2018

投资金额/万元

4.0

5.0

6.0

7.0

8.0

年利润增长量/万元

6.0

7.0

9.0

11.0

12.0

1)记年利润增长量投资金额,现从2014年至2018年这5年中抽出两年进行调查分析,求所抽两年都是万元的概率;

2)请用最小二乘法求出关于的回归直线方程;如果2019年该企业对生产环节改进的投资金额为10万元,试估计该企业在2019年的年利润增长量为多少?

参考公式:

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数满足:①对任意,存在正常数,都有成立;②的值域为(),则函数是( )

A.周期为2的周期函数B.周期为4的周期函数

C.奇函数D.偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,BAC的中点,P是平行四边形BCDE内(含边界)的一点,且.有以下结论:

①当x=0时,y∈[2,3];

②当P是线段CE的中点时,

③若x+y为定值1,则在平面直角坐标系中,点P的轨迹是一条线段;

xy的最大值为﹣1;

其中你认为正确的所有结论的序号为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x3-6x+5,x∈R.

(1)求函数f(x)的极值;(2)若关于x的方程f(x)=a有三个不同的实根,求实数a的取值范围.

查看答案和解析>>

同步练习册答案