精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=$\frac{a(x-1)}{{x}^{2}}$,a≠0
(I)求函数f(x)的单调区间;
(II)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(III)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

分析 (Ⅰ)先求导函数,通过讨论a,直接让导函数大于0求出增区间,导函数小于0求出减区间即可;
(Ⅱ)直接利用切线的斜率即为切点处的导数值以及切点是直线与曲线的共同点联立方程即可求实数a的值;
(Ⅲ)先求出g(x)的导函数,分情况讨论出函数在区间[1,e]上的单调性,进而求得其在区间[1,e]上的最小值.

解答 解:(Ⅰ)因为函数f(x)=$\frac{a(x-1)}{{x}^{2}}$,
∴f′(x)=$\frac{a(2-x)}{{x}^{3}}$,
a>0时,f′(x)>0⇒0<x<2,f′(x)<0⇒x<0,或x>2,
故函数f(x)的单调增区间为(0,2),单调减区间为(-∞,0)和(2,+∞),
a<0时,f′(x)<0⇒0<x<2,f′(x)>0⇒x<0,或x>2,
故函数f(x)的单调减区间为(0,2),单调增区间为(-∞,0)和(2,+∞),
(Ⅱ)设切点为(x,y),
由切线斜率k=1=$\frac{a(2-x)}{{x}^{3}}$,⇒x3=-ax+2a,①
由x-y-1=x-$\frac{a(x-1)}{{x}^{2}}$-1=0⇒(x2-a)(x-1)=0⇒x=1,x=±$\sqrt{a}$.
把x=1代入①得a=1,
把x=$\sqrt{a}$代入①得a=1,
把x=-$\sqrt{a}$代入①得a=-1(舍去),
故所求实数a的值为1.
(Ⅲ)∵g(x)=xlnx-x2f(x)=xlnx-a(x-1),
∴g′(x)=lnx+1-a,解lnx+1-a=0得x=ea-1
故g(x)在区间(ea-1,+∞)上递增,在区间(0,ea-1)上递减,
①当ea-1≤1时,即0<a≤1时,g(x)在区间[1,e]上递增,其最小值为g(1)=0;
②当1<ea-1<e时,即1<a<2时,g(x)的最小值为g(ea-1)=a-ea-1
③当ea-1≥e,即a≥2时,g(x)在区间[1,e]上递减,其最小值为g(e)=e+a-ae.

点评 本题主要考查利用导数求闭区间上函数的最值以及利用导数研究函数的单调性,是高考的常考题型.

练习册系列答案
相关习题

科目:高中数学 来源:2015-2016学年江西省南昌市高二理下学期期末考试数学试卷(解析版) 题型:解答题

某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:

以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记表示2台机器三年内共需更换的易损零件数,表示购买2台机器的同时购买的易损零件数.

(I)求的分布列;

(II)若要求,确定的最小值;

(III)以购买易损零件所需费用的期望值为决策依据,在之中选其一,应选用哪个?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某校100名学生期末考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;
(3)若成绩在[50,60)的学生中男生比女生多一人,且从成绩在[50,60)的学生中任选2人,求此2人都是男生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在棱长为1的正方体ABCD-A1B1C1D1中,M为AA1的中点,则A到面MBD的距离为$\frac{\sqrt{6}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,在透明塑料制成的长方体ABCD-A1B1C1D1容器内灌进一些水,将容器底面一边BC固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法:
①有水的部分始终呈棱柱状;
②水面四边形EFGH的面积不改变;
③棱A1D1始终与水面EFGH平行;
④当E∈AA1时,AE+BF是定值.
其中正确说法是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.点(-1,3)到直线y=-1的距离是4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某几何体的三视图如图所示,则此几何体的外接球的表面积为(  )
A.B.13πC.17πD.48π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,设曲线C参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),直线l的极坐标方程为ρcos(θ-$\frac{π}{4}$)=2$\sqrt{2}$.
(1)写出曲线C的普通方程和直线l的直角坐标方程;
(2)求曲线C上的点到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在平面直角坐标系中,方程x2+y2=1经过伸缩变换$\left\{\begin{array}{l}{{x}^{′}=2x}\\{{y}^{′}=3y}\end{array}\right.$后,得到的方程为(  )
A.$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{3}$=1B.2x2+3y2=1C.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1D.4x2+9y2=1

查看答案和解析>>

同步练习册答案