【题目】某企业要设计制造一批大小、规格相同的长方体封闭水箱,已知每个水箱的表面积为432(每个水箱的进出口所占面积与制作材料的厚度均忽略不计).每个长方体水箱的底面长是宽的2倍.现设每个长方体水箱的底面宽是,用表示每个长方体水箱的容积.
(1)试求函数的解析式及其定义域;
(2)当为何值时,有最大值,并求出最大值.
科目:高中数学 来源: 题型:
【题目】已知函数 (a是常数且a>0).对于下列命题:
①函数f(x)的最小值是-1;
②函数f(x)在R上是单调函数;
③若f(x)>0在上恒成立,则a的取值范围是a>1;
④对任意的x1<0,x2<0且x1≠x2,恒有
.
其中正确命题的序号是____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数,其中是自然对数的底数.
(1)若,,证明;
(2)是否存在实数,使得函数在区间上有两个零点?若存在,求出的取值范围:若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】天干地支纪年法,源于中国,中国自古便有十天干与十二地支.十天干:甲、乙、丙、丁、戊、己、庚、辛、壬、癸.十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,…,以此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,之后地支回到“子”重新开始,即“丙子”,…,以此类推,已知2016年为丙申年,那么到改革开放100年时,即2078年为________年
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,有一块半圆形空地,开发商计划建造一个矩形游泳池及左右两侧两个大小相同的矩形休息区,其中半圆的圆心为,半径为,矩形的一边在上,矩形的一边在上,点在圆周上,在直径上,且,设.若每平方米游泳池的造价与休息区造价之比为.
(1)记游泳池及休息区的总造价为,求的表达式;
(2)为进行投资预算,当为何值时,总造价最大?并求出总造价的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图(1),在平面五边形中,已知四边形为正方形,为正三角形.沿着将四边形折起得到四棱锥,使得平面平面,设在线段上且满足,在线段上且满足,为的重心,如图(2).
(1)求证:平面;
(2)求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多面体ABCDEF中,四边形ABCD是菱形,AC,BD相交于点O,EF∥AB,EFAB,平面BCF⊥平面ABCD,BF=CF,G为BC的中点,求证:
(1)OG∥平面ABFE;
(2)AC⊥平面BDE.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是梯形,,,是正三角形,为的中点,平面平面.
(1)求证:平面;
(2)在棱上是否存在点,使得二面角的余弦值为?若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:(),其中离心率,点为椭圆上的动点,为椭圆的左右焦点,若面积的最大值为.
(1)求椭圆的标准方程;
(2)直线 交椭圆于两点,点是椭圆的上顶点,若,试问直线是否经过定点,若经过定点,求出定点坐标,否则说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com