【题目】已知函数,其中.
(1)讨论函数的单调性;
(2)当时,证明:不等式恒成立(其中,).
【答案】(1)见解析;(2)见解析.
【解析】分析:(1)求出函数的导数,通过讨论的范围,求出函数的单调区间即可;
(2)问题转化为证明 恒成立.设,则上式等价于,要证明对任意,恒成立,要证明g(x1+x2)>g(x1-x2)对任意x1∈R,x2∈(0,+∞)恒成立,即证明在上单调递增,根据函数的单调性证明即可.
详解:
(1)由于.
1)当时,,当时,,递增,
当时,,递减;
2)当时,由得或.
当时,,当时,,递增,
当时,,递减,
当时,,递增;
当时,,递增;
③当时,.
当时,,递增,
当时,,递减,
当时,,递增.
综上,当时,在上是减函数,在上是增函数;
当时,在,上是增函数,在上是减函数;
当时,在上是增函数;
当时,在,上是增函数,在上是减函数.
(2)依题意 恒成立.
设,则上式等价于,
要证明对任意,恒成立,
即证明在上单调递增,又,
只需证明即可.令,则,
当时,,当时,,
∴,即,,那么,当时,,所以 ;当时,, ,
∴恒成立.从而原不等式成立.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x|x﹣a|,a∈R.
(1)当f(2)+f(﹣2)>4时,求a的取值范围;
(2)若a>0,x,y∈(﹣∞,a],不等式f(x)≤|y+3|+|y﹣a|恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,点,直线的参数方程为为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)求曲线的直角坐标方程;
(2)若直线与曲线相交于不同的两点是线段的中点,当时,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设X~N(1,σ2),其正态分布密度曲线如图所示,且P(X≥3)=0.0228,那么向正方形OABC中随机投掷10000个点,则落入阴影部分的点的个数的估计值为( )
(附:随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%)
A. 6038 B. 6587 C. 7028 D. 7539
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下图统计了截止到2019年年底中国电动汽车充电桩细分产品占比及保有量情况,关于这5次统计,下列说法正确的是( )
A.私人类电动汽车充电桩保有量增长率最高的年份是2018年
B.公共类电动汽车充电桩保有量的中位数是25.7万台
C.公共类电动汽车充电桩保有量的平均数为23.12万台
D.从2017年开始,我国私人类电动汽车充电桩占比均超过50%
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年底,北京2022年冬奥组委会启动志愿者全球招募,仅一个月内报名人数便突破60万,其中青年学生约有50万人.现从这50万青年学生志愿者中,按男女分层抽样随机选取20人进行英语水平测试,所得成绩(单位:分)统计结果用茎叶图记录如下:
(Ⅰ)试估计在这50万青年学生志愿者中,英语测试成绩在80分以上的女生人数;
(Ⅱ)从选出的8名男生中随机抽取2人,记其中测试成绩在70分以上的人数为X,求的分布列和数学期望;
(Ⅲ)为便于联络,现将所有的青年学生志愿者随机分成若干组(每组人数不少于5000),并在每组中随机选取个人作为联络员,要求每组的联络员中至少有1人的英语测试成绩在70分以上的概率大于90%.根据图表中数据,以频率作为概率,给出的最小值.(结论不要求证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数,.
(1)当时,求函数在点处的切线方程;
(2)是函数的极值点,求函数的单调区间;
(3)在(2)的条件下,,若,,使不等式恒成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为准确把握市场规律,某公司对其所属商品售价进行市场调查和模型分析,发现该商品一年内每件的售价按月近似呈的模型波动(为月份),已知3月份每件售价达到最高90元,直到7月份每件售价变为最低50元.则根据模型可知在10月份每件售价约为_____.(结果保留整数)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com