精英家教网 > 高中数学 > 题目详情
18.某班一次数学考试后的成绩如表所示:
成绩分组[60,70)[70,80)[80,90)[90,100)
人数5152010
据此估计,该班本次数学测试的平均成绩为82.

分析 利用平均数的公式以及组中值,即可求出.

解答 解:$\overline{x}$=$\frac{65×5+75×15+85×20+95×10}{5+15+20+10}$=82,
故答案为:82.

点评 本题考查了平均数的求法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知函数y=f(x),x∈I,若存在x0∈I,使得f(x0)=x0,则称x0为函数y=f(x)的不动点;若存在x0∈I,使得f(f(x0))=x0,则称x0为函数y=f(x)的稳定点.则下列结论中正确的是①②⑤.(填上所有正确结论的序号)
①-$\frac{1}{2}$,1是函数g(x)=2x2-1有两个不动点;
②若x0为函数y=f(x)的不动点,则x0必为函数y=f(x)的稳定点;
③若x0为函数y=f(x)的稳定点,则x0必为函数y=f(x)的不动点;
④函数g(x)=2x2-1共有三个稳定点;
⑤若函数y=f(x)在定义域I上单调递增,则它的不动点与稳定点是完全相同.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设函数f(x)=$\left\{\begin{array}{l}{\frac{1}{x},x>1}\\{-x-2,x≤1}\end{array}\right.$,则函数f(x)的值域是(0,1)∪[-3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.关于x的不等式x2-(a+a2)x+a3<0(a>0)的解集为(x1,x2),且x2-x1=12,则a=(  )
A.4B.3C.3或4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A={x|x2-5x+4≤0},B={x|log2x≤3}则A∪B=(  )
A.[1,8]B.[1,4]C.(0,8]D.(-∞,8]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知定义在R上函数f(x)的值域是(-∞,0],并且函数f(x)单调,则方程f3(x)-3f(x)-1=0的解的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.椭圆$\frac{{x}^{2}}{2}+{y}^{2}$=1的斜率为$\frac{1}{2}$的弦AB的中垂线交x轴于P,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列求数列极限的式子中,不正确的是(  )
A.$\underset{lim}{n→∞}\frac{2•4•6…(2n)}{3•6•9…(3n)}$=0B.$\underset{lim}{n→∞}\frac{1}{n}$•sin$\frac{nπ}{3}$=0
C.$\underset{lim}{n→∞}$(1-$\frac{1}{2}$)(1-$\frac{1}{3}$)…(1-$\frac{1}{n}$)=0D.$\underset{lim}{n→∞}$$\frac{{3}^{n}{-2}^{n}}{{3}^{n}{+2}^{n}}$=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知f(x)=$\sqrt{2}$sin(x+$\frac{π}{4}$),x∈[0,π],则f(x)的单调递增区间为[0,$\frac{π}{4}$].

查看答案和解析>>

同步练习册答案