精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面是矩形,平面平面分别为棱的中点.求证:

(1)平面

(2)平面.

【答案】(1)详见解析; (2)详见解析.

【解析】试题分析:(1)线面平行的证明则只需在面内找一线与之平行即可,因为MN分别为棱PDPC的中点,所以MNDC, 又因为底面ABCD是矩形,所以ABDC

所以MNAB.(2)线面垂直则需要在面内找两根相交线与之垂直,因为AP=ADMPD的中点, 所以AMPD.因为平面PAD⊥平面ABCD, 又平面PAD∩平面ABCD= ADCDAD平面ABCD,所以CD⊥平面PAD. 又平面PAD,所以CDAM

试题解析:

(1)因为MN分别为棱PDPC的中点,所以MNDC, 又因为底面ABCD是矩形,所以ABDC

所以MNAB. 又平面PAB平面PAB,所以MN∥平面PAB

(2)因为AP=ADMPD的中点, 所以AMPD.因为平面PAD⊥平面ABCD, 又平面PAD∩平面ABCD= ADCDAD平面ABCD,所以CD⊥平面PAD. 又平面PAD,所以CDAM. 因为CD平面PCD,所以AM⊥平面PCD

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们每场比赛得分的情况用如图所示的茎叶图表示,则甲、乙两名运动员的中位数分别为(

A.19、13
B.13、19
C.20、18
D.18、20

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数=ex(exa)﹣a2x

(1)讨论的单调性;

(2)若,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三人准备报考某大学,假设甲考上的概率为 ,甲,丙两都考不上的概率为 ,乙,丙两都考上的概率为 ,且三人能否考上相互独立.
(1)求乙、丙两人各自考上的概率;
(2)设X表示甲、乙、丙三人中考上的人数与没考上的人数之差的绝对值,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直角△ABC,AB=AC=3,P,Q分别为边AB,BC上的点,M,N是平面上两点,若 + =0,( + =0, =3 ,且直线MN经过△ABC的外心,则 =(
A.
B.
C.1
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图已知四棱锥P﹣ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD,E,F分别为棱BC,AD的中点.

(1)若PD=1,求异面直线PB和DE所成角的余弦值.
(2)若二面角P﹣BF﹣C的余弦值为 ,求四棱锥P﹣ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是函数 的两个极值点.

(1)若,求函数的解析式;

(2)若,求的最大值;

(3)设函数,当时,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,过点作直线交圆两点,分别过两点作圆的切线,当两条切线相交于点时,则点的轨迹方程为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若关于的不等式上恒成立,求的取值范围;

(2)设函数,若上有两个不同极值点,求的取值范围,并判断极值的正负.

查看答案和解析>>

同步练习册答案