精英家教网 > 高中数学 > 题目详情

已知函数,试讨论此函数的单调性。

,递增区间为,递减区间为
,递增区间为,递减区间为
单调递减区间为,递增区间为
,单调递增区间为,递减区间为

解析试题分析:

,所以的单调递增区间为,递减区间为
,令
,则的单调递增区间为,递减区间为
,所以的单调递增区间为,递减区间为
,则的单调递减区间为,递增区间为
,所以的单调递增区间为,递减区间为
考点:函数的单调性
点评:主要是考查了导数在研究函数单调性中的运用,属于中档题。体现了分类讨论思想的运用。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数是定义在R上的奇函数,对任意实数成立.
(1)证明是周期函数,并指出其周期;
(2)若,求的值;
(3)若,且是偶函数,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求上的最小值;
(2)若函数上为增函数,求正实数的取值范围;
(3)若关于的方程在区间内恰有两个相异的实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数的图像在处取得极值4.
(1)求函数的单调区间;
(2)对于函数,若存在两个不等正数,当时,函数的值域是,则把区间叫函数的“正保值区间”.问函数是否存在“正保值区间”,若存在,求出所有的“正保值区间”;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处取得极值,且恰好是的一个零点.
(Ⅰ)求实数的值,并写出函数的单调区间;
(Ⅱ)设分别是曲线在点(其中)处的切线,且
①若的倾斜角互补,求的值;
②若(其中是自然对数的底数),求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,直线与函数的图像都相切,且与函数的图像的切点的横坐标为1.  
(1)求直线的方程及的值;
(2)若(其中的导函数),求函数的最大值;
(3)当时,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若不等式,求的取值范围;
(Ⅱ)若不等式的解集为R,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处取得极值 .
(I)求实 数a和b.         (Ⅱ)求f(x)的单调区间

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax3+bx2-x(x∈R,a、b是常数,a≠0),且当x=1和x=2时,函数f(x)取得极值.(I)求函数f(x)的解析式;
(Ⅱ)若曲线y=f(x)与g(x)=有两个不同的交点,求实数m的取值范围.

查看答案和解析>>

同步练习册答案