【题目】椭圆 =1(a>b>0)的离心率为 ,右焦点到直线x+y+ =0的距离为2 . (Ⅰ) 求椭圆的方程;
(Ⅱ) 过点M(0,﹣1)作直线l交椭圆于A,B两点,交x轴于N点,满足 =﹣ ,求直线l的方程.
【答案】解:(Ⅰ)∵椭圆的离心率为 ,右焦点到直线x+y+ =0的距离为2 , ∴
∴c= ,a=2 ,
∴b= ,
∴椭圆的方程为 ;
(Ⅱ)设A (x1 , y1),B(x2 , y2),N(x0 , 0)
∵ =﹣ ,
∴(x1﹣x0 , y1)=﹣ (x2﹣x0 , y2)
∴y1=﹣ y2①
易知直线斜率不存在时或斜率为0时①不成立
于是设直线l的方程为y=kx﹣1(k≠0).
与椭圆方程联立,消去x可得(4k2+1)y2+2y+1﹣8k2=0②
∴y1+y2=﹣ ③y1y2= ④
由①③可得y2= ,y1=﹣ 代入④整理可得:8k4+k2﹣9=0
∴k2=1
此时②为5y2+2y﹣7=0,判别式大于0
∴直线l的方程为y=±x﹣1
【解析】(Ⅰ)根据圆的离心率为 ,右焦点到直线x+y+ =0的距离为2 ,建立方程组,可求椭圆的方程;(Ⅱ)设A (x1 , y1),B(x2 , y2),N(x0 , 0),利用 =﹣ ,可得(x1﹣x0 , y1)=﹣ (x2﹣x0 , y2),设直线l的方程为y=kx﹣1(k≠0),与椭圆方程联立,消去x可得(4k2+1)y2+2y+1﹣8k2=0,由此即可求得直线l的方程.
科目:高中数学 来源: 题型:
【题目】在公差不为零的等差数列{an}和等比数列{bn}中.已知a1=b1=1.a2=b2 . a6=b3
(1)求等差数列{an}的通项公式an和等比数列{bn}的通项公式bn;
(2)求数列{anbn}的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知 , , , 为非零向量,且 + = , ﹣ = ,则下列说法正确的个数为( ) ①若| |=| |,则 =0;
②若 =0,则| |=| |;
③若| |=| |,则 =0;
④若 =0,则| |=| |
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知空间四个点A(1,1,1),B(﹣4,0,2),C(﹣3,﹣1,0),D(﹣1,0,4),则直线AD与平面ABC所成的角为( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)= 的定义域为集合A,函数g(x)=x﹣a(0<x<4)的值域为集合B. (Ⅰ)求集合A,B;
(Ⅱ)若集合A,B满足A∩B=B,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一名心率过速患者服用某种药物后心率立刻明显减慢,之后随着药力的减退,心率再次慢慢升高,则自服药那一刻起,心率关于时间的一个可能的图象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的左焦点F及点A(0,b),原点O到直线FA的距离为 .
(1)求椭圆C的离心率e;
(2)若点F关于直线l:2x+y=0的对称点P在圆O:x2+y2=4上,求椭圆C的方程及点P的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面四边形ABCD中,AD=1,CD=2,AC= .
(1)求cos∠CAD的值;
(2)若cos∠BAD=﹣ ,sin∠CBA= ,求BC的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线y2=ax上一点M(4,b)到焦点的距离为6.
(1)求抛物线的方程;
(2)若此抛物线与直线y=kx﹣2交于不同的两点A、B,且AB中点的横坐标为2,求k的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com