精英家教网 > 高中数学 > 题目详情

已知矩形ABCD中,AB=2,AD=1,E、F分别是BC、CD的中点,则(数学公式)•数学公式等于________.


分析:利用向量的运算法则和数量积的定义即可得出.
解答:如图所示,
∵矩形ABCD中,E、F分别是BC、CD的中点,∴=

∴()•=
====
故答案为
点评:利用向量的运算法则和数量积的定义即可得出c.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知矩形ABCD中,AB=2AD=4,E为CD的中点,沿AE将△AED折起,使DB=2
3
,O、H分别为AE、AB的中点.
(1)求证:直线OH∥面BDE;
(2)求证:面ADE⊥面ABCE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知矩形ABCD中,|AD|=3,|AB|=4.将矩形ABCD沿对角线BD折起,使得面BCD⊥面ABD.现以D为原点,DB作为y轴的正方向,建立如图空间直角坐标系,此时点A恰好在xDy坐标平面内.试求A,C两点的坐标.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩形ABCD中,AB=2,AD=4,动点P在以点C为圆心,1为半径的圆上,若
AP
AB
AD
(λ,μ∈R),则λ+2μ的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•临沂二模)如图,已知矩形ABCD中,AB=2AD=2,O为CD的中点,沿AO将三角形AOD折起,使DB=
3

(Ⅰ)求证:平面AOD⊥平面ABCO;
(Ⅱ)求直线BC与平面ABD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩形ABCD中,AB=6,BC=6
2
,E为AD的中点(图一).沿BE将△ABE折起,使平面ABE⊥平面BECD(图二),且F为AC的中点.
(1)求证:FD∥平面ABE;
(2)求证:AC⊥BE.

查看答案和解析>>

同步练习册答案