精英家教网 > 高中数学 > 题目详情
5.下列函数中,值域为(0,+∞)的是(  )
A.y=$\sqrt{x}$B.y=$\frac{1}{\sqrt{x}}$C.y=$\frac{1}{x}$D.y=x2+1

分析 分别求出四个函数的值域得答案.

解答 解:函数$y=\sqrt{x}$的值域为[0,+∞);
函数$y=\frac{1}{\sqrt{x}}$的定义域为(0,+∞),值域为(0,+∞);
函数$y=\frac{1}{x}$的定义域和值域均为(-∞,0)∪(0,+∞);
函数y=x2+1的值域为[1,+∞).
故选:B.

点评 本题考查函数的定义域和值域的求法,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.求双曲线的标准方程
(1)求中心在原点,对称轴为坐标轴经过点P(1,-3)且离心率为$\sqrt{2}$的双曲线标准方程.
(2)求与双曲线$\frac{x^2}{16}-\frac{y^2}{9}=1$共渐近线且过$A({2\sqrt{3},-3})$点的双曲线标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知单位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$满足$\overrightarrow{{e}_{1}}$•$\overrightarrow{{e}_{2}}$=$\frac{1}{2}$.若(5$\overrightarrow{{e}_{1}}$-4$\overrightarrow{{e}_{2}}$)⊥($\overrightarrow{{e}_{1}}$+k$\overrightarrow{{e}_{2}}$)(k∈R),则k=2,|$\overrightarrow{{e}_{1}}$+k$\overrightarrow{{e}_{2}}$|=$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数中,既不是奇函数也不是偶函数的是(  )
A.y=lnxB.y=xC.y=-x3D.y=ex+e-x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=\frac{x+2a-1}{{{x^2}+1}}$为奇函数,及lg2=0.3010,lg2.015=0.3043.
(1)求实数a的值;
(2)证明函数f(x)在区间[1,+∞)上是减函数;
(3)求最小的正整数n,使得f(1+0.01×2n)+f(-2016)<f(0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数$f(x)=\left\{\begin{array}{l}\frac{1}{2}x,x≤0\\{x^2}-4x,x>0\end{array}\right.$,若关于x的方程f(x)=m恰有三个互不相等的实数根x1,x2,x3,则x1x2x3的取值范围是(  )
A.(-32,0)B.(-16,0)C.(-8,0)D.(-4,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知实数x,y满足:$\left\{\begin{array}{l}x+3y+5≥0\\ x+y-1≤0\\ x+a≥0\end{array}\right.$,若z=x+2y的最小值为-6,则实数a=(  )
A.-4B.2C.8D.$-\frac{10}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$是任意非零平面向量,且$\overrightarrow{a}$⊥$\overrightarrow{b}$,如果x1,x2是方程$\overrightarrow{a}$x2+$\overrightarrow{b}$x+$\overrightarrow{c}$=$\overrightarrow{0}$(x∈R)的两个实数根,试用反证法证明x1=x2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f(x)=${∫}_{0}^{{x}^{2}}$sintdt,则当x→0时,f(x)是x的(  )阶无穷小.
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案