精英家教网 > 高中数学 > 题目详情

【题目】已知函数 .

(1)讨论函数的单调性;

(2)当时,证明:对任意的,有.

【答案】(1)答案见解析;(2)证明见解析.

【解析】试题分析:

(1)由题意结合导函数的解析式分类讨论有:

时, 上单调递增,在上单调递减;

时, 上单调递增,在上单调递减;

时, 上单调递增;

时, 上单调递增,在上单调递减;

(2)原问题等价于上恒成立,构造函数,据此可得,则恒成立.

试题解析:

(1)由题意得

时,由

①当时, 上单调递增,在上单调递减;

②当时, 上单调递增,在上单调递减;

③当时, 上单调递增;

④当时, 上单调递增,在上单调递减;

(2)当时,要证上恒成立,

只需证上恒成立,

因为

易得上单调递增,在上单调递减,故

由得,得

时, ;当时,

所以

,所以,即

所以上恒成立,

故当时,对任意的 恒成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥D﹣ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC点,F棱AC上,且AF=3FC.

(1)求三棱锥D﹣ABC的体积;
(2)求证:AC⊥平面DEF;
(3)若M为DB中点,N在棱AC上,且CN= CA,求证:MN∥平面DEF.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在直角梯形ABCD中,AB∥CD,∠BCD=90°,BC=CD=2,AF=BF,EC∥FD,FD⊥底面ABCD,M是AB的中点.
(1)求证:平面CFM⊥平面BDF;
(2)点N在CE上,EC=2,FD=3,当CN为何值时,MN∥平面BEF.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥P﹣ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=2. (Ⅰ)证明:平面PBE⊥平面PAB;
(Ⅱ)求二面角B﹣PE﹣D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P﹣ABCD中,△ABC为正三角形,AB⊥AD,AC⊥CD,PA⊥平面ABCD,PC与平面ABCD所成角为45°
(1)若E为PC的中点,求证:PD⊥平面ABE;
(2)若CD= ,求点B到平面PCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若圆C1:(x﹣1)2+(y+3)2=1与圆C2:(x﹣a)2+(y﹣b)2=1外离,过直线l:x﹣y﹣1=0上任意一点P分别做圆C1 , C2的切线,切点分别为M,N,且均保持|PM|=|PN|,则a+b=(
A.﹣2
B.﹣1
C.1
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.
(1)求应从小学、中学、大学中分别抽取的学校数目;
(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析. (ⅰ)列出所有可能的抽取结果;
(ⅱ)求抽取的2所学校均为小学的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCD﹣A1B1C1D1中,点O为线段BD的中点,设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是(
A.[ ,1]
B.[ ,1]
C.[ ]
D.[ ,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是圆O的直径,PA垂直圆所在的平面,C是圆上的点.
(I)求证:平面PAC⊥平面PBC;
(II)若AC=1,PA=1,求圆心O到平面PBC的距离.

查看答案和解析>>

同步练习册答案