精英家教网 > 高中数学 > 题目详情

,平面⊥平面是线段上一点,

(Ⅰ)证明:⊥平面
(Ⅱ)若,求直线与平面所成角的正弦值.

(Ⅰ)详见解析;(Ⅱ).

解析试题分析:(Ⅰ)由平面平面可得平面,从而.
接下来显然考虑证明,这只需在平面中证明.
(Ⅱ)由于直线两两垂直,故可以轴,以轴,以轴建立空间直角坐标系如图所示 ,然后利用向量求直线与平面所成角的正弦值.
试题解析:(Ⅰ)因为平面平面,平面平面
平面
平面.
平面,所以.

,
,即.
,所以平面.
(Ⅱ)由于直线两两垂直,故可以轴,以轴,以轴建立空间直角坐标系如图所示 ,


所以.
设平面的法向量为
,解之得一个法向量.
设直线与平面所成角为
,所以直线与平面所成角的正弦值为.
考点:1、面面垂直的性质及线面垂直的判定;2、直线与平面所成的角.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=1.

(1)求异面直线B1C1与AC所成角的大小;
(2)若该直三棱柱ABC-A1B1C1的体积为,求点A到平面A1BC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.

(1)证明:B1C1⊥CE;
(2)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为.求线段AM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(如图1)在平面四边形中,中点,,且,现沿折起使,得到立体图形(如图2),又B为平面ADC内一点,并且ABCD为正方形,设F,G,H分别为PB,EB,PC的中点.

(1)求三棱锥的体积;
(2)在线段PC上是否存在一点M,使直线与直线所成角为?若存在,求出线段的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知直角梯形所在的平面垂直于平面

(Ⅰ)点是直线中点,证明平面
(Ⅱ)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在斜三棱柱ABC-A1B1C1中,侧面AA1B1B⊥底面ABC,侧棱AA1与底面ABC成60°的 角,AA1=2.底面ABC是边长为2的正三角形,其重心为G点,E是线段BC1上一点,且BE=3(1)BC1.

(1)求证:GE∥侧面AA1B1B;
(2)求平面B1GE与底面ABC所成锐二面角的正切值;
(3)求点B到平面B1GE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.

(1) 证明:BD⊥平面PAC;
(2) 若AD=2,当PC与平面ABCD所成角的正切值为时,求四棱锥P-ABCD的外接球表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图棱柱的侧面是菱形,,D是的中点,证明:

(Ⅰ)∥面
(Ⅱ)平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知正三棱柱中,上的动点.

(1)求五面体的体积;
(2)当在何处时,平面,请说明理由;
(3)当平面时,求证:平面平面.

查看答案和解析>>

同步练习册答案