精英家教网 > 高中数学 > 题目详情
已知f(x)是偶函数,当x>0时,其导函数f'(x)<0,则满足的所有x之和为( )
A.-6
B.6
C.-7
D.7
【答案】分析:f(x)为偶函数推出f(-x)=f(x),x>0时f(x)是单调增函数,推出f(x)不是周期函数.所以若f(a)=f(b)⇒a=b或a=-b,再利用根与系数的关系进行求解.
解答:解:∵f(x)为偶函数,f(2x)=f(-2x)且当x>0时f(x)是单调增函数,
又满足f()=f(),
==-
可得,x2-7x+4=0或x2+x-4=0,
∴x1+x2=7或x3+x4=-1,
∴x1+x2+x3+x4=7-1=6,
故选B.
点评:本题属于函数性质的综合应用,解决此类题型要注意变换自变量与函数值的关系:①奇偶性:f(-x)=f(x)②增函数x1<x2?f(x1)<f(x2);减函数x1<x2?f(x1)<f(x2).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、已知f(x)是偶函数,x∈R,若将f(x)的图象向右平移一个单位又得到一个奇函数,若f(2)=-1,则f(1)+f(2)+f(3)+…+f(2006)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是偶函数,且f(x)在[0,+∞)上是增函数,如果f(ax+1)≤f(x-2)在x∈[
1
2
,1]
上恒成立,则实数a的取值范围是(  )
A、[-2,1]
B、[-5,0]
C、[-5,1]
D、[-2,0]

查看答案和解析>>

科目:高中数学 来源: 题型:

16、已知f(x)是偶函数,且在[a,b]上是减函数,试判断f(x)在[-b,-a]上的单调性,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是偶函数,当x≥0时,f(x)=-x2+4x,求当x<0时,f(x)=
-x2-4x
-x2-4x

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•合肥二模)已知f(x)是偶函数,当.x∈[0,
π
2
]时,f(x)=xsinx,若a=f(cos1),b=f(cos2),c=f(cos3),则 a,b,c 的大小关系为(  )

查看答案和解析>>

同步练习册答案