精英家教网 > 高中数学 > 题目详情

【题目】已知数据,,是上海普通职()个人的年收入,设这个数据的中位数为,平均数为,方差为,如果再加上世界首富的年收入,则这个数据中,下列说法正确(

A.年收入平均数大大增大,中位数一定变大,方差可能不变

B.年收入平均数大大增大,中位数可能不变,方差变大

C.年收入平均数大大增大,中位数可能不变,方差也不变

D.年收入平均数大大增大,中位数可能不变,方差可能不变

【答案】B

【解析】

根据题意,结合平均数,中位数,方差的定义,即可判断出结果.

因为数据,,是上海普通职()个人的年收入,

是世界首富的年收入,则会远大于,,

故这个数据的平均值大大增加,但中位数可能不变,有可能稍微变大,

但由于数据的集中程度也受到比较大的影响,数据更加离散,则方差变大.

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】私家车的尾气排放是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力.为此,很多城市实施了机动车车尾号限行,我市某报社为了解市区公众对车辆限行的态度,随机抽查了人,将调查情况进行整理后制成下表:

年龄(岁)

频数

赞成人数

)完成被调查人员的频率分布直方图.

)若从年龄在的被调查者中各随机选取人进行追踪调查,求恰有人不赞成的概率.

)在在条件下,再记选中的人中不赞成车辆限行的人数为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业参加项目生产的工人为人,平均每人每年创造利润万元.根据现实的需要,从项目中调出人参与项目的售后服务工作,每人每年可以创造利润万元(),项目余下的工人每人每年创造利图需要提高

1)若要保证项目余下的工人创造的年总利润不低于原来名工人创造的年总利润,则最多调出多少人参加项目从事售后服务工作?

2)在(1)的条件下,当从项目调出的人数不能超过总人数的时,才能使得项目中留岗工人创造的年总利润始终不低于调出的工人所创造的年总利润,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某旅游胜地欲开发一座景观山,从山的侧面进行勘测,迎面山坡线由同一平面的两段抛物线组成,其中所在的抛物线以为顶点、开口向下,所在的抛物线以为顶点、开口向上,以过山脚(点)的水平线为轴,过山顶(点)的铅垂线为轴建立平面直角坐标系如图(单位:百米).已知所在抛物线的解析式所在抛物线的解析式为

(1)求值,并写出山坡线的函数解析式;

(2)在山坡上的700米高度(点)处恰好有一小块平地,可以用来建造索道站,索道的起点选择在山脚水平线上的点处,(米),假设索道可近似地看成一段以为顶点、开口向上的抛物线当索道在上方时,索道的悬空高度有最大值,试求索道的最大悬空高度;

(3)为了便于旅游观景,拟从山顶开始、沿迎面山坡往山下铺设观景台阶,台阶每级的高度为20厘米,长度因坡度的大小而定,但不得少于20厘米,每级台阶的两端点在坡面上(见图).试求出前三级台阶的长度(精确到厘米),并判断这种台阶能否一直铺到山脚,简述理由?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的方程为,其中常数是抛物线的焦点.

(1)若直线被抛物线所截得的弦长为6,求的值;

(2)设是点关于顶点的对称点,是抛物线上的动点,求的最大值;

(3)设是两条互相垂直,且均经过点的直线,与抛物线交于点与抛物线交于点,若点满足,求点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1是某斜拉式大桥图片,为了了解桥的一些结构情况,学校数学兴趣小组将大桥的结构进行了简化,取其部分可抽象成图2所示的模型,其中桥塔与桥面垂直,通过测量得知,当中点时,.

1)求的长;

2)试问在线段的何处时,达到最大.

1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,一艺术拱门由两部分组成,下部为矩形的长分别为米和米,上部是圆心为的劣弧

1)求图1中拱门最高点到地面的距离:

2)现欲以点为支点将拱门放倒,放倒过程中矩形所在的平面始终与地面垂直,如图2、图3、图4所示,设与地面水平线所成的角为.若拱门上的点到地面的最大距离恰好为到地面的距离,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于给定的正整数,若数列满足对任意正整数恒成立,则称数列数列,若正数项数列,满足:对任意正整数恒成立,则称数列;

1)已知正数项数列数列,且前五项分别为,求的值;

2)若为常数,且数列,求的最小值;

3)对于下列两种情形,只要选作一种,满分分别是 分,②分,若选择了多于一种情形,则按照序号较小的解答记分.

① 证明:数列是等差数列的充要条件为“既是数列,又是数列”;

②证明:正数项数列是等比数列的充要条件为“数列既是数列,又是数列”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为实数常数)

1)当时,求函数上的单调区间;

2)当时,成立,求证:

查看答案和解析>>

同步练习册答案