某工厂家具车间造A、B型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张A、B型桌子分别需要1小时和2小时,漆工油漆一张A、B型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A、B型桌子分别获利润2千元和3千元,试问工厂每天应生产A、B型桌子各多少张,才能获得利润最大?最大利润是多少?
每天应生产A型桌子2张,B型桌子3张才能获得最大利润,最大利润为13千元.
解析试题分析:设每天生产A型桌子x张,B型桌子y张,根据题意可列出不等式组
在平面直角坐标系中作出上不等式组所表示的平面区域,将目标函数化成
当变化时,它表示一组平行直线,当该直线经过可行域且在轴上的截距最大时最大.依此找出最优解,求得的最大值.
试题解析:
解:设每天生产A型桌子x张,B型桌子y张,则
目标函数为:z=2x+3y
作出可行域:
把直线:2x+3y=0向右上方平移至的位置时,直线经过可行域上的点M,且与原点距离最大,此时z=2x+3y取最大值
解方程得M的坐标为(2,3)
此时最大利润千元
答:每天应生产A型桌子2张,B型桌子3张才能获得最大利润,最大利润为13千元.
考点:线线规划.
科目:高中数学 来源: 题型:解答题
某企业生产A,B两种产品,生产每吨产品所需的劳动力和煤、电耗如下表:
已知生产每吨A产品的利润是7万元,生产每吨B产品的利润是12万元,现因条件限制,该企业仅有劳动力300个,煤360 t,并且供电局只能供电200 kW,试问该企业生产A,B两种产品各多少吨,才能获得最大利润?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某公司承担了每天至少搬运280吨水泥的任务,已知该公司有6辆A型卡车和8辆B型卡车.又已知A型卡车每天每辆的运载量为30吨,成本费为0.9千元;B型卡车每天每辆的运载量为40吨,成本费为1千元.
(1)如果你是公司的经理,为使公司所花的成本费最小,每天应派出A型卡车、B型卡车各多少辆?
(2)在(1)的所求区域内,求目标函数的最大值和最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com