精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,已知直线l的普通方程为x﹣y﹣2=0,曲线C的参数方程为 (θ为参数),设直线l与曲线C交于A,B两点.若点P在曲线C上运动,当△PAB的面积最大时,求点P的坐标及△PAB的最大面积.

【答案】解:∵曲线C的参数方程为 (θ为参数),

∴曲线C的普通方程为 =1,

联立 ,解得

∴A(0,﹣2),B(3,1),∴|AB|= =3

△PAB的面积最大,即点P到直线l的距离d最大,

设P( ,sinθ),则d= =

当cos( )=﹣1,即 ,k∈Z时,

=3

∴△PAB的最大面积S= = =9.

此时P(﹣3, ).


【解析】先将曲线C的参数方程化为普通方程,联立曲线C的方程和直线l的方程可解得A,B的坐标,进而可得|AB|,再设P的坐标,计算点P到直线l的距离d,利用辅助角公式和三角函数的性质可得d的最大值,从而可得△PAB的最大面积及点P的坐标.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,正四面体ABCD的顶点C在平面α内,且直线BC与平面α所成角为15°,顶点B在平面α上的射影为点O,当顶点A与点O的距离最大时,直线CD与平面α所成角的正弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,输出的x的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设 (n∈N*,an∈Z,bn∈Z).
(1)求证:an2﹣8bn2能被7整除;
(2)求证:bn不能被5整除.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一块以点O为圆心,半径为2百米的圆形草坪,草坪内距离O点 百米的D点有一用于灌溉的水笼头,现准备过点D修一条笔直小路交草坪圆周于A,B两点,为了方便居民散步,同时修建小路OA,OB,其中小路的宽度忽略不计.

(1)若要使修建的小路的费用最省,试求小路的最短长度;
(2)若要在△ABO区域内(含边界)规划出一块圆形的场地用于老年人跳广场舞,试求这块圆形广场的最大面积.(结果保留根号和π)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= 其中t>0,若函数g(x)=f[f(x)﹣1]有6个不同的零点,则实数t的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公比为q(q≠1)的等比数列a1 , a2 , a3 , a4 , 若删去其中的某一项后,剩余的三项(不改变原有顺序)成等差数列,则所有满足条件的q的取值的代数和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 (ω>0)的图象与x轴正半轴交点的横坐标构成一个公差为 的等差数列,若要得到函数g(x)=Asinωx的图象,只要将f(x)的图象(  )个单位.
A.向左平移
B.向右平移
C.向左平移
D.向右平移

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y= 与y=ln(1﹣x)的定义域分别为M、N,则M∪N=(  )
A.(1,2]
B.[1,2]
C.(﹣∞,1]∪(2,+∞)
D.(﹣∞,1)∪[2,+∞)

查看答案和解析>>

同步练习册答案