精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ex-x(e为自然对数的底数).
(1)求函数f(x)的最小值;
(2)若n∈N*,证明:(
1
n
)n+(
2
n
)n+…+(
n-1
n
)n+(
n
n
)n
e
e-1
分析:(1)求出f'(x)=ex-1,当x>0时,f'(x)>0,当x<0时,f'(x)<0,故当x=0时,f(x)有最小值1.
(2) 令x=-
k
n
,则∴(1-
k
n
)n≤(e
k
n
)n=e-k(k=1,2,,n-1)
,得到
(
1
n
)
n
+(
2
n
)
n
+…+(
n-1
n
)
n
+(
n
n
)
n
e-(n-1)+e-(n-2)+…+e-2+e-1+1
,利用等比数列求和公式和放缩法,可证明 e-(n-1)+e-(n-2)+…+e-2+e-1+1=
1-e-n
1-e-1
1
1-e-1
=
e
e-1
解答:解:(1)∵f(x)=ex-x,∴f'(x)=ex-1,令f'(x)=0,得x=0.
∴当x>0时,f'(x)>0,当x<0时,f'(x)<0.∴函数f(x)=ex-x在区间(-∞,0)上单调递减,
在区间(0,+∞)上单调递增.∴当x=0时,f(x)有最小值1.
(2)证明:由(1)知,对任意实数x均有ex-x≥1,即1+x≤ex.令x=-
k
n
(n∈N*,k=1,2,,n-1),
0<1-
k
n
e-
k
n
,∴(1-
k
n
)n≤(e
k
n
)n=e-k(k=1,2,,n-1)

(
n-k
n
)ne-k(k=1,2,,n-1)
.∵(
n
n
)n=1

(
1
n
)
n
+(
2
n
)
n
+…+(
n-1
n
)
n
+(
n
n
)
n
e-(n-1)+e-(n-2)+… .+e-2+e-1+1

e-(n-1)+e-(n-2)+…+e-2+e-1+1=
1-e-n
1-e-1
1
1-e-1
=
e
e-1

(
1
n
)
n
+(
2
n
)
n
+…+(
n-1
n
)
n
+(
n
n
)
n
e
e-1
点评:本题考查利用导数求函数的最值,等比数列求和公式,用放缩法证明不等式,得到
(
1
n
)
n
+(
2
n
)
n
+…+(
n-1
n
)
n
+(
n
n
)
n
e-(n-1)+e-(n-2)+…+e-2+e-1+1
是解题的关键和难点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=e-x(cosx+sinx),将满足f′(x)=0的所有正数x从小到大排成数列{xn}.求证:数列{f(xn)}为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•西城区二模)已知函数f(x)=e|x|+|x|.若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•菏泽一模)已知函数f(x)=e|lnx|-|x-
1
x
|,则函数y=f(x+1)的大致图象为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=e-xsinx(其中e=2.718…).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)求f(x)在[-π,+∞)上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=e-x(x2+x+1).
(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)求函数f(x)在[-1,1]上的最值.

查看答案和解析>>

同步练习册答案