精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,内角A,B,C的对边分别是a,b,c,且 =
(Ⅰ)求角B的大小;
(Ⅱ)点D满足 =2 ,且线段AD=3,求2a+c的最大值.

【答案】解:(Ⅰ)△ABC中, =

=

∴ac﹣c2=a2﹣b2

∴ac=a2+c2﹣b2

∴cosB= = =

又B∈(0,π),

∴B=

(Ⅱ)如图所示,

点D满足 =2 ,∴BC=CD;

又线段AD=3,

∴AD2=c2+4a2﹣2c2acos =c2+4a2﹣2ac=9,

∴c2+4a2=9+2ac;

又c2+4a2≥2c2a,

∴4ac≤9+2ac,

∴2ac≤9;

∴(2a+c)2=4a2+4ac+c2=9+6ac≤9+3×9=36,

∴2a+c≤6,

即2a+c的最大值为6


【解析】(Ⅰ)由正弦定理和余弦定理,即可求出cosB以及B的值;(Ⅱ)结合题意画出图形,根据图形利用余弦定理和基本不等式,即可求出2a+c的值.
【考点精析】本题主要考查了正弦定理的定义和余弦定理的定义的相关知识点,需要掌握正弦定理:;余弦定理:;;才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】数列{an}的各项均为正数,且an+1=an+ ﹣1(n∈N*),{an}的前n项和是Sn
(Ⅰ)若{an}是递增数列,求a1的取值范围;
(Ⅱ)若a1>2,且对任意n∈N* , 都有Sn≥na1 (n﹣1),证明:Sn<2n+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A、B、C所对的边为a、b、c,且满足cos2A﹣cos2B=2cos(A﹣ )cos(A+ ).
(Ⅰ)求角B的值;
(Ⅱ)若b= ≤a,求2a﹣c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的方程为y=x+2,点P是抛物线y2=4x上到直线l距离最小的点,点A是抛物线上异于点P的点,直线AP与直线l交于点Q,过点Q与x轴平行的直线与抛物线y2=4x交于点B.

(Ⅰ)求点P的坐标;
(Ⅱ)证明直线AB恒过定点,并求这个定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线l的参数方程为 (其中t为参数),现以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ=4cosθ.
(Ⅰ)写出直线l和曲线C的普通方程;
(Ⅱ)已知点P为曲线C上的动点,求P到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}中,a2=6,a3+a6=27.
(1)求数列{an}的通项公式;
(2)记数列{an}的前n项和为Sn , 且Tn= ,若对于一切正整数n,总有Tn≤m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x= 时,函数f(x)取得最小值,则下列结论正确的是(
A.f(2)<f(﹣2)<f(0)
B.f(0)<f(2)<f(﹣2)
C.f(﹣2)<f(0)<f(2)
D.f(2)<f(0)<f(﹣2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程为 (0≤α<π,t为参数),曲线C的极坐标方程为ρ=
(Ⅰ)将曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;
(Ⅱ)若直线l经过点(1,0),求直线l被曲线C截得的线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的方程为(x﹣3)2+(y﹣4)2=16,过直线l:6x+8y﹣5a=0(a>0)上的任意一点作圆的切线,若切线长的最小值为 ,则直线l在y轴上的截距为

查看答案和解析>>

同步练习册答案