精英家教网 > 高中数学 > 题目详情
2.命题p:x2-3x+2=0,命题q:x=2,则p是q的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分又非必要条件

分析 化简p,即可判断出关系.

解答 解:命题p:x2-3x+2=0,解得x=1,2.
又命题q:x=2,
∴q⇒p,而反之不成立.
则p是q的必要不充分条件.
故选:B.

点评 本题考查了方程的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.若m,n是实数,且m>n,则下列结论成立的是(  )
A.lg(m-n)>0B.($\frac{1}{2}$)m<($\frac{1}{2}$)nC.$\frac{n}{m}$<1D.m2>n2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A=[0,4),集合B={x|x2-2x≥3,x∈N},则A∩B=(  )
A.{x|3≤x<4}B.{x|0≤x<3}C.{3}D.{3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={x|y=log2(5-2x),x∈N},B={x|3x(x-2)≤1},则A∩B等于(  )
A.{x|0≤x≤2}B.{x|1≤x<2}C.{0,1}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设数列{an}的前n项和为Sn,且a1=1,nan+1=2Sn,n∈N*.
(1)求数列{an}的通项公式;
(2)已知f(log2x)=x2-x,若存在实数k,对于任意的自然数n(n≥2),f(an)≥k•4n,求k的最大值.
(3)在(2)条件下,求证:$\frac{1}{f({a}_{1})}+\frac{1}{f({a}_{2})}$+…+$\frac{1}{f({a}_{n})}$<$\frac{11}{18}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知p:方程x2+mx+4=0有两个不等的负根;q:方程4x2+4(m-2)x+1=0无实根,若p或q为真,p且q为假,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.给出下面类比推理命题(其中Q为有理数集,R为实数集,C为复数集):
①“若a、b∈R,则a-b=0⇒a=b”类比推出“a、b∈C,则a-b=0⇒a=b”;
②“若a、b∈R,则a-b>0⇒a>b”类比推出“若a、b∈C,则a-b>0⇒a>b;
③“若a、b、c、d∈R,则复数a+bi=c+di⇒a=c,b=d”类比推出“a、b、c、d∈Q,则a+b$\sqrt{2}$=c+d$\sqrt{2}$⇒a=c,b=d”;
④若“x∈R,则|x|<1⇒-1<x<1”类比推出z∈C,则|z|<1⇒-1<z<1.
上述类比中正确的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.四棱锥P-ABCD的底面ABCD是矩形,侧面PAD⊥平面ABCD,∠APD=120°,AB=PA=PD=2,则该四棱锥P-ABCD外接球的体积为(  )
A.$\frac{32π}{3}$B.$\frac{20\sqrt{5}π}{3}$C.8$\sqrt{6}$πD.36π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和为Sn,且Sn=2an+n.
(1)证明:数列{an-1}为等比数列;
(2)求Sn

查看答案和解析>>

同步练习册答案