精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=xlnx,g(x)= +x﹣a(a∈R). (Ⅰ)若直线x=m(m>0)与曲线y=f(x)和y=g(x)分别交于M,N两点.设曲线y=f(x)在点M处的切线为l1 , y=g(x)在点N处的切线为l2
(ⅰ)当m=e时,若l1⊥l2 , 求a的值;
(ⅱ)若l1∥l2 , 求a的最大值;
(Ⅱ)设函数h(x)=f(x)﹣g(x)在其定义域内恰有两个不同的极值点x1 , x2 , 且x1<x2 . 若λ>0,且λlnx2﹣λ>1﹣lnx1恒成立,求λ的取值范围.

【答案】解:(Ⅰ)(i)∵函数f(x)=xlnx,∴f(x)的定义域为{x|x>0},f′(x)=1+lnx, ∵g(x)= +x﹣a(a∈R),∴g′(x)=ax+1,
当m=e时,f′(e)=1+lne=2,g′(e)=ae+1,
∵l1⊥l2 , ∴f′(e)g′(e)=2(ae+1)=﹣1,
解得a=﹣
(ii)∵函数f(x)=xlnx,∴f(x)的定义域为{x|x>0},f′(x)=1+lnx,
∵g(x)= +x﹣a(a∈R),∴g′(x)=ax+1,
∴f′(m)=1+lnm,g′(m)=am+1,
∵l1∥l2 , ∴f′(m)=g′(m)在(0,+∞)上有解,
∴lnm=am在(0,+∞)上有解,
∵m>0,∴a=
令F(x)= (x>0),则 =0,解得x=e,
当x∈(0,e)时,F′(x)>0,F(x)为增函数,
当x∈(e,+∞)时,F′(x)<0,F(x)为减函数,
∴F(x)max=F(e)=
∴a的最大值为
(Ⅱ)h(x)=xlnx﹣ ﹣x+a,(x>0),h′(x)=lnx﹣ax,
∵x1 , x2为h(x)在其定义域内的两个不同的极值点,
∴x1 , x2是方程lnx﹣ax=0的两个根,即lnx1=ax1 , lnx2=ax2
两式作差,并整理,得:a=
∵λ>0,0<x1<x2
由λlnx2﹣λ>1﹣lnx1 , 得1+λ<lnx1+λlnx2
则1+λ<a(x1+λx2),∴a> ,∴
∴ln
令t= ,则t∈(0,1),由题意知:
lnt< 在t∈(0,1)上恒成立,
令φ(t)=lnt﹣ ,则φ′(t)= =
①当λ2≥1时,即λ≥1时,t∈(0,1),φ′(t)>0,
∴φ(t)在(0,1)上单调递增,
又φ(1)=0,则φ(t)<0在(0,1)上恒成立.
②当λ2<1,即0<λ<1时,t∈(0,λ2)时,φ′(t)>0,φ(t)在(0,λ2)上是增函数;
当t∈(λ2 , 1)时,φ′(t)<0,φ(t)在(λ2 , 1)上是减函数.
又φ(1)=0,∴φ(t)不恒小于0,不合题意.
综上,λ的取值范围是[1,+∞).
【解析】(Ⅰ)(i)f(x)的定义域为{x|x>0},f′(x)=1+lnx,g′(x)=ax+1,当m=e时,f′(e)=1+lne=2,g′(e)=ae+1,由l1⊥l2 , 利用导数的几何意义得f′(e)g′(e)=2(ae+1)=﹣1,由此能求出a. (ii)f′(m)=1+lnm,g′(m)=am+1,由l1∥l2 , 得lnm=am在(0,+∞)上有解,从而a= ,令F(x)= (x>0),由 =0,得x=e,利用导数性质求出F(x)max=F(e)= ,由此能求出a的最大值.(Ⅱ)h(x)=xlnx﹣ ﹣x+a,(x>0),h′(x)=lnx﹣ax,从而x1 , x2是方程lnx﹣ax=0的两个根,进而a= ,推导出 ,从而ln ,令t= ,则t∈(0,1),从而lnt< 在t∈(0,1)上恒成立,令φ(t)=lnt﹣ ,则φ′(t)= = ,由此根据λ2≥1和λ2<1分类讨论,利用导数性质能求出λ的取值范围.
【考点精析】关于本题考查的利用导数研究函数的单调性和函数的最大(小)值与导数,需要了解一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)的定义域是(0,+∞),f'(x)为f(x)的导函数,且满足f(x)<f'(x),则不等式 f(2)的解集是(
A.(﹣∞,2)∪(1,+∞)
B.(﹣2,1)
C.(﹣∞,﹣1)∪(2,+∞)
D.(﹣1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C过点(1,0),(0, ),(﹣3,0),则圆C的方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,2asinB=b. (Ⅰ)求∠A的大小;
(Ⅱ)求 sinB﹣cos(C+ )的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设P为曲线C1上动点,Q为曲线C2上动点,则称|PQ|的最小值为曲线C1 , C2之间的距离,记作d(C1 , C2).若C1:x2+y2=2,C2:(x﹣3)2+(y﹣3)2=2,则d(C1 , C2)=;若C3:ex﹣2y=0,C4:lnx+ln2=y,则d(C3 , C4)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设有两个命题,p:关于x的不等式ax>1(a>0,且a≠1)的解集是{x|x<0};q:函数y=lg(ax2﹣x+a)的定义域为R.如果p∨q为真命题,p∧q为假命题,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x轴的正半轴重合.直线l的参数方程是 (t为参数),曲线C的极坐标方程为ρ= sin( ).
(1)求曲线C的直角坐标方程;
(2)设直线l与曲线C相交于M、N两点,求M、N两点间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,平面PAC⊥平面ABCD,AC=2BC=2CD=4,∠ACB=∠ACD=60°.
(1)证明:CP⊥BD;
(2)若AP=PC=2 ,求二面角A﹣BP﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(2x+b)ex , F(x)=bx﹣lnx,b∈R.
(1)若b<0,且存在区间M,使f(x)和F(x)在区间M上具有相同的单调性,求b的取值范围;
(2)若F(x+1)>b对任意x∈(0,+∞)恒成立,求b的取值范围.

查看答案和解析>>

同步练习册答案