精英家教网 > 高中数学 > 题目详情

矩形ABCD中,,沿对角线AC将矩形折成直二面

,,则B与D之间的距离是              


解析:

B与D之间的距离是。应用异面直线上两点之间的距离公式:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

矩形ABCD中,已知AB=1,BC=a,PA⊥面积ABCD,PA=
2
,若BC边上存在唯一点Q,使得PQ⊥QD.
(1)求a的值;
(2)M是AD上的一点,M在平面PQD上的射影恰好是△PQD的重心,求M到平面PDQ的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在矩形ABCD中,AB=2BC,P、Q分别为线段AB、CD的中点.EP⊥平面ABCD.
(Ⅰ)求证:AQ∥平面CEP;
(Ⅱ)求证:平面AEQ⊥平面DEP;
(Ⅲ)若EP=AP,求二面角Q-AE-P的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宁德模拟)如图所示,在矩形ABCD中,AB=3
5
,AD=6,BD是对角线,过A作AE⊥BD,垂足为O,交CD于E,以AE为折痕将△ADE向上折起,使点D到点P的位置.且PB=
41

(I)求证:PO⊥平面ABCE;
(n)求二面角E-AP-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在矩形ABCD中,AB=4,BC=6,当直角三角板MPN 的直角顶点P在BC边上移动时,直角边MP始终经过点A,设直角三角板的另一直角边PN与CD相交于点Q.BP=x,CQ=y,那么y与x之间的函数图象大致是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•崇文区二模)如图1 矩形ABCD中,AB=6,BC=2
3
,沿对角线BD将三角形ABD向上折起,使点A移动到点P,使点P在平面BCD上的射影在DC上(如图2).

(Ⅰ)求证:PD⊥面PCB;
(Ⅱ)求二面角P-DB-C的大小的正弦值;
(Ⅲ)求直线CD与平面PBD所成角的大小的正弦值.

查看答案和解析>>

同步练习册答案