精英家教网 > 高中数学 > 题目详情
在平面直角坐标系中,记抛物线y=x-x2与x轴所围成的平面区域为M,该抛物线与直线y=kx(k>0)所围成的平面区域为A,向区域M内随机抛掷一点P,若点P落在区域A内的概率为
8
27
,则k的值为
1
3
1
3
分析:根据定积分的几何意义,利用定积分计算公式算出抛物线y=x-x2与x轴所围成的平面区域M的面积S=
1
6
,从而由几何概型公式算出抛物线与y=kx围成的平面区域A的面积为S'=
4
81
.由此算出y=x-x2与y=kx在第一象限的交点坐标,利用定积分公式建立关于k的方程,解之即可得到实数k的值.
解答:解:∵抛物线y=x-x2与x轴交于点(0,0)与(1,0),
∴根据定积分的几何意义,可得抛物线与x轴所围成的平面区域M的面积为
S=
1
0
(x-x2)dx=(
1
2
x2-
1
3
x3
|
1
0
=
1
6

设抛物线与直线y=kx(k>0)所围成的平面区域A的面积为S',
∵向区域M内随机抛掷一点P,点P落在区域A内的概率为
8
27

S′
S
=
8
27
,可得S'=
8
27
S=
4
81

求出y=x-x2与y=kx的交点中,除原点外的点B坐标为(1-k,k-k2),
可得S'=
1-k
0
[(x-x2)-kx]dx=[
1
2
(1-k)x2-
1
3
x3
]
|
1-k
0
=
1
6
(1-k)3
因此可得
1
6
(1-k)3=
4
81
,解之得k=
1
3

故答案为:
1
3
点评:本题给出几何概型的概率,求直线的斜率k的值.着重考查了定积分计算公式、定积分的几何意义和几何概型公式等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为:pcos(θ-
π3
)=1
,M,N分别为曲线C与x轴,y轴的交点,则MN的中点P在平面直角坐标系中的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)设α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,下列命题中正确的是
 
(写出所有正确命题的编号).
①存在这样的直线,既不与坐标轴平行又不经过任何整点
②如果k与b都是无理数,则直线y=kx+b不经过任何整点
③直线l经过无穷多个整点,当且仅当l经过两个不同的整点
④直线y=kx+b经过无穷多个整点的充分必要条件是:k与b都是有理数
⑤存在恰经过一个整点的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,下列函数图象关于原点对称的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,以点(1,0)为圆心,r为半径作圆,依次与抛物线y2=x交于A、B、C、D四点,若AC与BD的交点F恰好为抛物线的焦点,则r=
 

查看答案和解析>>

同步练习册答案