精英家教网 > 高中数学 > 题目详情
6.在△ABC中,A:B:C=1:2:3,则a:b:c=(  )
A.1:2:3B.sin1:sin2:sin3C.1:$\sqrt{3}$:2D.1:2:$\sqrt{3}$

分析 根据三角形的内角和定理,可判断此三角形为直角三角形,再利用30°所对的直角边是斜边的一半,勾股定理求解.

解答 解:在△ABC中,A:B:C=1:2:3,
所以A=30°,B=60°,C=90°.
设a=x,则c=2x,
根据勾股定理,得b=$\sqrt{3}$x,
可得:a:b:c=1:$\sqrt{3}$:2.
故选:C.

点评 注意这一结论:30°的直角三角形中,三边从小到大的比是1:$\sqrt{3}$:2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=sinx-bcosx(其中b为实数)的图象关于直线x=-$\frac{π}{6}$对称,且?x1,x2∈R,且x1≠x2,f(x1)f(x2)≤4恒成立,则下列结论正确的是(  )
A.函数f(x)的图象向左平移$\frac{π}{3}$个单位得到的函数是偶函数
B.不等式f(x1)f(x2)≤4取到等号时|x1-x2|的最小值为2π
C.函数f(x)的图象的一个对称中心为($\frac{2}{3}$π,0)
D.函数f(x)在区间[$\frac{π}{6}$,π]上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1与椭圆$\frac{x^2}{m^2}+\frac{y^2}{b^2}$=1(m>b>0)的离心率之积等于1,则以a,b,m为边长的三角形一定是(  )
A.等腰三角形B.钝角三角形C.锐角三角形D.直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.有编号为D1,D2,…,D10的10个零件,测量其直径(单位:mm),得到下面数据:
其中直径在区间(148,152]内的零件为一等品.
编号D1D2D3D4D5D6D7D8D9D10
直径151148149151149152147146153148
(1)从上述10个零件中,随机抽取2个,求这2个零件均为一等品的概率;
(2)从一等品零件中,随机抽取2个.用ξ表示这2个零件直径之差的绝对值,求随机变量ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知A(1,2),B(3,-1),C(3,4),则$\overrightarrow{AB}$•$\overrightarrow{AC}$=(  )
A.-2B.-1C.5D.11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列函数求导正确的个数是(  )
(1 )$y=ln3,则y{\;}^'=\frac{1}{3}$
(2)y=$\sqrt{2x-1},则{y^'}=\frac{1}{{\sqrt{2x-1}}}$
(3)y=e2x+1,则y′=2e2x+1
(4)y=$\frac{x}{sinx},则y=\frac{sinx-cosx}{{{{({sinx})}^2}}}$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数y=x2+1,求:
(1)在点(1,2)处的切线方程;
(2)过点(1,1)的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设命题p:实数a满足不等式3a≤9,命题q:x2+3(3-a)x+9≥0的解集为R.已知“p∧q”为真命题,并记为条件r,且条件t:实数a满足a<m或$a>m+\frac{1}{2}$.
(1)求条件r的等价条件(用a的取值范围表示);
(2)若r是¬t的必要不充分条件,求正整数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列关于幂函数y=xα(α∈Q)的论述中,正确的是(  )
A.当α=0时,幂函数的图象是一条直线
B.幂函数的图象都经过(0,0)和(1,1)两个点
C.若函数f(x)为奇函数,则f(x)在定义域内是增函数
D.幂函数f(x)的图象不可能在第四象限内

查看答案和解析>>

同步练习册答案