精英家教网 > 高中数学 > 题目详情
(2012•茂名二模)如图所示,圆柱的高为2,PA是圆柱的母线,ABCD为矩形,AB=2,BC=4,E、F、G分别是线段PA,PD,CD的中点.
(1)求证:平面PDC⊥平面PAD;
(2)求证:PB∥面EFG;
(3)在线段BC上是否存在一点M,使得D到平面PAM的距离为2?若存在,求出BM;若不存在,请说明理由.
分析:(1)证明平面PDC⊥平面PAD,只需证明CD⊥平面PAD即可;
(2)取AB中点H,连接GH,HE,证明E,F,G,H四点共面,再证明EH∥PB,利用线面平行的判定,即可证明PB∥面EFG;(3)假设在BC上存在一点M,使得点D到平面PAM的距离为2,则以△PAM为底D为顶点的三棱锥的高为2,连接AM,则AM=
AB2+BM2
=
4+BM2
,利用等体积VD-PAM=VP-AMD,即可求得结论.
解答:(1)证明:∵PA是圆柱的母线,∴PA⊥圆柱的底面.…(1分)
∵CD?圆柱的底面,∴PA⊥CD
又∵ABCD为矩形,∴CD⊥AD
而AD∩PA=A,∴CD⊥平面PAD              …(3分)
又CD?平面PDC,∴平面PDC⊥平面PAD.  …(4分)
(2)证明:取AB中点H,连接GH,HE,
∵E,F,G分别是线段PA、PD、CD的中点,
∴GH∥AD∥EF,
∴E,F,G,H四点共面.           …(6分)
又H为AB中点,∴EH∥PB.        …(7分)
又EH?面EFG,PB?平面EFG,
∴PB∥面EFG.                     …(9分)
(3)解:假设在BC上存在一点M,使得点D到平面PAM的距离为2,则以△PAM为底D为顶点的三棱锥的高为2,
连接AM,则AM=
AB2+BM2
=
4+BM2

由(2)知PA⊥AM,∴S△PAM=
1
2
PA•AM
=
1
2
×2×
4+BM2
=
4+BM2

∴VD-PAM=
1
3
S△PAM×2
=
1
3
×
4+BM2
×2=
2
3
4+BM2
…(11分)
∵S△AMD=
1
2
AD×AB
=
1
2
×4×2=4

∴VP-AMD=
1
3
S△AMD×PA=
1
3
×4×2
=
8
3
   …(12分)
∵VD-PAM=VP-AMD
2
3
4+BM2
=
8
3
   
解得:BM=2
3

2
3
<4

∴在BC上存在一点M,当BM=2
3
使得点D到平面PAM的距离为2…(14分)
点评:本题考查面面垂直,考查线面垂直,考查三棱锥体积的计算,解题的关键是掌握面面、线面垂直的判定定理,正确计算三棱锥的体积,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•茂名二模)(坐标系与参数方程选做题)
已知曲线C的参数方程为
x=1+cosθ
y=sinθ
(θ为参数),则曲线C上的点到直线x+y+2=0的距离的最大值为
3
2
2
+1
3
2
2
+1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•茂名二模)已知函数f(x)=2
3
sin
x
3
cos
x
3
-2sin2
x
3

(1)求函数f(x)的值域;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,若f(C)=1,且b2=ac,求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•茂名二模)已知全集U=R,则正确表示集合M={0,1,2}和N={x|x2+2x=0}关系的韦恩(Venn)图是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•茂名二模)长方体的一个顶点上的三条棱长分别是3,4,x,且它的8个顶点都在同一球面上,这个球的表面积是125π,则x的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•茂名二模)下列三个不等式中,恒成立的个数有(  )
①x+
1
x
≥2(x≠0);②
c
a
c
b
(a>b>c>0);③
a+m
b+m
a
b
(a,b,m>0,a<b).

查看答案和解析>>

同步练习册答案