【题目】将函数f(x)=2cos2x的图象向右平移 个单位后得到函数g(x)的图象,若函数g(x)在区间[0, ]和[2a, ]上均单调递增,则实数a的取值范围是( )
A.[ , ]
B.[ , ]
C.[ , ]
D.[ , ]
科目:高中数学 来源: 题型:
【题目】设,,若对任意成立,则下列命题中正确的命题个数是( )
(1)
(2)
(3)不具有奇偶性
(4)的单调增区间是
(5)可能存在经过点的直线与函数的图象不相交
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(Ⅰ)若曲线在处的切线与直线平行,求实数的值;
(Ⅱ)若函数在定义域上为增函数,求实数的取值范围;
(Ⅲ)若有两个极值点,且,,若不等式恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】假设某士兵远程射击一个易爆目标,射击一次击中目标的概率为,三次射中目标或连续两次射中目标,该目标爆炸,停止射击,否则就一直独立地射击至子弹用完.现有5发子弹,设耗用子弹数为随机变量X.
(1)若该士兵射击两次,求至少射中一次目标的概率;
(2)求随机变量X的概率分布与数学期望E(X).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,将一矩形花坛扩建成一个更大的矩形花坛,要求点在上,点在上,且对角线过点,已知米,米.
(1)要使矩形的面积大于平方米,则的长应在什么范围内?
(2)当的长度是多少时,矩形花坛的面积最小?并求出最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知表1是某年部分日期的天安门广场升旗时刻表.
表1:某年部分日期的天安门广场升旗时刻表
将表1中的升旗时刻化为分数后作为样本数据(如:可化为).
(Ⅰ)请补充完成下面的频率分布表及频率分布直方图;
|
(Ⅱ)若甲学校从上表日期中随机选择一天观看升旗.试估计甲学校观看升旗的时刻早于6:00的概率;
(Ⅲ)若甲,乙两个学校各自从表1中五月、六月的日期中随机选择一天观看升旗, 求两校观看升旗的时刻均不早于5:00的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知边长为的正的顶点在平面内,顶点,在平面外的同一侧,点,分别为,在平面内的投影,设,直线与平面所成的角为.若是以角为直角的直角三角形,则的最小值为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市政府为了引导居民合理用水,决定全面实施阶梯水价,阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价:若用水量不超过12吨时,按4元/吨计算水费;若用水量超过12吨且不超过14吨时,超过12吨部分按6.60元/吨计算水费;若用水量超过14吨时,超过14吨部分按7.80元/吨计算水费.为了了解全市居民月用水量的分布情况,通过抽样,获得了100户居民的月用水量(单位:吨),将数据按照[0,2],(2,4],…,(14,16]分成8组,制成了如图1所示的频率分布直方图.
(Ⅰ)假设用抽到的100户居民月用水量作为样本估计全市的居民用水情况.
( i)现从全市居民中依次随机抽取5户,求这5户居民恰好3户居民的月用水用量都超过12吨的概率;
(ⅱ)试估计全市居民用水价格的期望(精确到0.01);
(Ⅱ)如图2是该市居民李某2016年1~6月份的月用水费y(元)与月份x的散点图,其拟合的线性回归方程是 .若李某2016年1~7月份水费总支出为294.6元,试估计李某7月份的用水吨数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com