精英家教网 > 高中数学 > 题目详情

【题目】在斜三棱柱中,,侧面是边长为4的菱形,分别为的中点.

1)求证:平面

2)若,求二面角的正弦值.

【答案】(1)证明见解析; (2) .

【解析】

1)结合菱形的性质和勾股定理,证得,再由,得到,利用线面垂直的判定定理,即可证得平面

2)以为坐标原点,以射线轴,以射线轴,过向上作平面的垂线为轴建立空间直角坐标系,求得平面的法向量,利用向量的夹角公式,即可求解.

1)由题意,因为是菱形,中点,所以.

又因为是直角三角形的斜边的中线,

,又

所以,所以是直角三角形,∴

因为,所以平面,所以

又因为,所以,所以平面.

2)由(1)知平面,因为平面,所以平面平面

又由,所以平面

为坐标原点,以射线轴,以射线轴,过向上作平面的垂线为轴建立空间直角坐标系,如图所示,则轴,

由(1)知平面,∴平面的法向量

设平面的法向量

,即

,则.

所以

所以

故二面角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)若存在极大值,证明:

2)若关于的不等式在区间上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知定点,点轴上运动,点轴上运动,点为坐标平面内的动点,且满足.

1)求动点的轨迹的方程;

2)过曲线第一象限上一点(其中)作切线交直线于点,连结并延长交直线于点,求当面积取最小值时切点的横坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“我将来要当一名麦田里的守望者,有那么一群孩子在一块麦田里玩,几千万的小孩子,附近没有一个大人,我是说……除了我”《麦田里的守望者》中的主人公霍尔顿将自己的精神生活寄托于那广阔无垠的麦田.假设霍尔顿在一块成凸四边形的麦田里成为守望者,如图所示,为了分割麦田,他将连接,设中边所对的角为中边所对的角为,经测量已知.

1)霍尔顿发现无论多长,为一个定值,请你验证霍尔顿的结论,并求出这个定值;

2)霍尔顿发现麦田的生长于土地面积的平方呈正相关,记的面积分别为,为了更好地规划麦田,请你帮助霍尔顿求出的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥中,底面是正方形,平面,,的中点.

1)求证:平面平面;

2)求二面角的大小;

3)试判断所在直线与平面是否平行,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为矩形,平面分别为的中点.

1)证明:平面

2)若与平面所成的角为,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点分别是椭圆的左顶点和上顶点,为其右焦点,,且该椭圆的离心率为

1)求椭圆的标准方程;

2)设点为椭圆上的一动点,且不与椭圆顶点重合,点为直线轴的交点,线段的中垂线与轴交于点,若直线斜率为,直线的斜率为,且为坐标原点),求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为定义在上的奇函数,当时,有,且当时,,下列命题正确的是( )

A.B.函数在定义域上是周期为的函数

C.直线与函数的图象有个交点D.函数的值域为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论函数的单调性;

(2)设,当函数的图象有三个不同的交点时,求实数的取值范围.

查看答案和解析>>

同步练习册答案