精英家教网 > 高中数学 > 题目详情
已知几何体E-ABCD如图所示,其中四边形ABCD为矩形,△ABE为等边三角形,且AD=
3
AE=2,DE=
7
,点F为棱BE上的动点.
(I)若DE∥平面AFC,试确定点F的位置;
(II)在(I)条件下,求几何体D-FAC的体积.
分析:(I)连接BD交AC于点M,若DE∥平面AFC,则DE∥FM,点M为BD中点,则F为棱BE的中点即可确定点F的位置;
(II)在(I)条件下,求出底面DAC的面积,求出F到底面的距离,即可求几何体D-FAC的体积.
解答:解:(I)证明:连接BD交AC于点M,若DE∥平面AFC,因为平面AFC∩平面BDE=MF,
则DE∥FM,点M为BD中点,则F为棱BE的中点…(6分)
(II)因为VD-FAC=VF-ACD=
1
3
S△ACD
3
2
=
1
2

所求体积为
1
2
.…(12分)
点评:本题是中档题,考查几何体的体积的求法,转化思想的应用,直线与平面平行的应用,考查空间想象能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知四棱锥P--ABC的底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,e为PC的中点,F为AD的中点.
(Ⅰ)证明EF∥平面PAB;
(Ⅱ)证明EF⊥平面PBC;
(III)点M是四边形ABCD内的一动点,PM与平面ABCD所成的角始终为45°,求动直线PM所形成的曲面与平面ABCD、平面PAB、平面PAD所围成几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,一个几何体由圆柱ADD1A1和三棱锥E-ABC组合而成,点A,B,C在⊙O的圆周上,E,A,D三点共线,已知AB⊥AC,AB=AC,AE=AD=1,BC=2.
(1)求证:AC⊥BD;
(2)求三棱锥C-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①已知函数f(x)=(
1
2x-1
)•x2-sinx+a(a为常数)
,且f(loga1000)=3,则f(lglg2)=3;
②若函数f(x)=lg(x2+ax-a)的值域是R,则a∈(-4,0);
③关于x的方程(
1
2
)x=lga
有非负实数根,则实数a的取值范围是(1,10);
④如图,三棱柱ABC-A1B1C1中,E、F分别是AB,AC的中点,平面EB1C1F将三棱柱分成几何体AEF-AB1C1和B1C1-EFCB两部分,其体积分别为V1,V2,则V1:V2=7:5.
其中正确命题的序号是
①③④
①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知,在空间四边形ABCD中,BC=AC,AD=BD,E是AB的中点.
(1)求证:平面CDE⊥平面ABC;
(2)若AB=DC=3,BC=5,BD=4,求几何体ABCD的体积;
(3)若G为△ADC的重心,试在线段AB上找一点F,使得GF∥平面CDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•顺义区一模)如图,已知在空间四边形ABCD中,AB=AC=DB=DC,E为BC的中点.
(Ⅰ)求证:平面ADE⊥平面ABC;
(Ⅱ)若AB=5,BC=6,AD=4,求几何体ABCD的体积;
(Ⅲ)在(Ⅱ)的条件下,若G为△ABD的重心,试问在线段BC上是否存在点F,使GF∥平面ADE?若存在,请指出点F在BC上的位置,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案