精英家教网 > 高中数学 > 题目详情

【题目】知关于不等式解集为.

(1)个数中任取的一个数,个数中任取的一个数,求为空集的概率;

(2)若是从区间任取的一个数,从区间任取的一个数,求为空集的概率.

【答案】(1);(2).

【解析】

试题分析:(1)根据题意,不为空集等价于不等式有解,即方程有实根,所以,又是从四个数中任取的一个数,是从三个数中任取的一个数,因此基本事件共有个,其中满足条件,则;(2)根据题意,试验的全部结果构成的区域为,满足题意的区域为,从而可得所求概率为.

试题解析:方程有实根的充要条件为……………………1

(1)基本事件共有12个,其中满足条件,则.………………………………………………5

(2)试验的全部结果构成的区域为………………………………7

满足题意的区域为……………………………………9

以,所求概率为.……………………………………12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点M(-2,0),N(2,0),动点P满足条件|PM|-|PN|=2,记动点P的轨迹为W

求W的方程;

若A、B是W上的不同两点,O是坐标原点,求的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在ABC中,a=b·cos C+c·cos B,其中a,b,c分别为角A,B,C的对边,在四面体PABC中,S1,S2,S3,S分别表示PAB,PBC,PCA,ABC的面积,α,β,γ依次表示面PAB,面PBC,面PCA与底面ABC所成二面角的大小.写出对四面体性质的猜想,并证明你的结论

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业共有20条生产线,由于受生产能力和技术水平等因素的影响,会产生一定量的次品.根据经验知道,每台机器产生的次品数万件与每台机器的日产量万件之间满足关系:.已知每生产1万件合格的产品可以以盈利3万元,但每生产1万件次品将亏损1万元.

)试将该企业每天生产这种产品所获得的利润表示为的函数;

)当每台机器的日产量为多少时,该企业的利润最大,最大为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数的最大值;

2)函数轴交于两点,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足

(Ⅰ)若数列是常数列,求的值;

(Ⅱ)当时,求证:

(Ⅲ)求最大的正数,使得对一切整数恒成立,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数,,在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线.

1求曲线的普通方程,并将的方程化为极坐标方程;

2直线的极坐标方程为,其中满足,若曲线的公共点都在上,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次篮球定点投篮训练中,规定每人最多投3次.在处每投进一球得3分;在处每投进一球得2分.如果前两次得分之和超过3分就停止投篮;否则投第三次. 某同学在处的投中率,在处的投中率为.该同学选择先在处投一球,以后都在处投,且每次投篮都互不影响.用表示

该同学投篮训练结束后所得的总分,其分布列为:

0

2

3

4

5

0.03

(1)求的值;

(2)求随机变量的数学期望

(3)试比较该同学选择上述方式投篮得分超过3分与选择都在处投篮得分超过3分的概率的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象上有一点列,点轴上的射影是,且 (), .

(1)求证: 是等比数列,并求出数列的通项公式;

(2)对任意的正整数,当时,不等式恒成立,求实数的取值范围.

(3)设四边形的面积是,求证: .

查看答案和解析>>

同步练习册答案