【题目】已知关于的不等式的解集为.
(1)若是从四个数中任取的一个数,是从三个数中任取的一个数,求不为空集的概率;
(2)若是从区间上任取的一个数,是从区间上任取的一个数,求不为空集的概率.
【答案】(1);(2).
【解析】
试题分析:(1)根据题意,“不为空集”等价于“不等式有解”,即方程有实根,所以,即,又是从,,,四个数中任取的一个数,是从,,三个数中任取的一个数,因此基本事件共有个,其中,,,,,,,,满足条件,则;(2)根据题意,试验的全部结果构成的区域为,满足题意的区域为,从而可得所求概率为.
试题解析:方程有实根的充要条件为,即,……………………1分
(1)基本事件共有12个,其中,满足条件,则.………………………………………………5分
(2)试验的全部结果构成的区域为,………………………………7分
满足题意的区域为,……………………………………9分
所以,所求概率为.……………………………………12分
科目:高中数学 来源: 题型:
【题目】已知点M(-2,0),N(2,0),动点P满足条件|PM|-|PN|=2,记动点P的轨迹为W.
⑴求W的方程;
⑵若A、B是W上的不同两点,O是坐标原点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在△ABC中,a=b·cos C+c·cos B,其中a,b,c分别为角A,B,C的对边,在四面体PABC中,S1,S2,S3,S分别表示△PAB,△PBC,△PCA,△ABC的面积,α,β,γ依次表示面PAB,面PBC,面PCA与底面ABC所成二面角的大小.写出对四面体性质的猜想,并证明你的结论
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业共有20条生产线,由于受生产能力和技术水平等因素的影响,会产生一定量的次品.根据经验知道,每台机器产生的次品数万件与每台机器的日产量万件之间满足关系:.已知每生产1万件合格的产品可以以盈利3万元,但每生产1万件次品将亏损1万元.
(Ⅰ)试将该企业每天生产这种产品所获得的利润表示为的函数;
(Ⅱ)当每台机器的日产量为多少时,该企业的利润最大,最大为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线的参数方程为(为参数,),在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线.
(1)求曲线的普通方程,并将的方程化为极坐标方程;
(2)直线的极坐标方程为,其中满足,若曲线与的公共点都在上,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一次篮球定点投篮训练中,规定每人最多投3次.在处每投进一球得3分;在处每投进一球得2分.如果前两次得分之和超过3分就停止投篮;否则投第三次. 某同学在处的投中率,在处的投中率为.该同学选择先在处投一球,以后都在处投,且每次投篮都互不影响.用表示
该同学投篮训练结束后所得的总分,其分布列为:
0 | 2 | 3 | 4 | 5 | |
0.03 |
(1)求的值;
(2)求随机变量的数学期望;
(3)试比较该同学选择上述方式投篮得分超过3分与选择都在处投篮得分超过3分的概率的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的图象上有一点列,点在轴上的射影是,且 (且), .
(1)求证: 是等比数列,并求出数列的通项公式;
(2)对任意的正整数,当时,不等式恒成立,求实数的取值范围.
(3)设四边形的面积是,求证: .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com