精英家教网 > 高中数学 > 题目详情

【题目】某校李老师本学期任高一A班、B班两个班数学课教学,两个班都是50个学生,下图反映的是两个班在本学期5次数学检测中的班级平均分对比,根据图表信息,下列不正确的结论是( )

A. A班的数学成绩平均水平好于B班

B. B班的数学成绩没有A班稳定

C. 下次B班的数学平均分高于A班

D. 在第一次考试中,A、B两个班总平均分为78分

【答案】C

【解析】分析:根据图表,分别求出A,B班的平均分以及方差,再得出四个选项中哪一个是不正确的即可。

详解:A班的5次数学测试平均分分别为81,80,81,80,85,5次的平均分,B班的5次数学测试平均分分别为75,80,76,85,80,5次的平均分为,A班的数学平均分好于B班,选项A正确;由于A班的成绩都在80分附近,而B班的平均分变化很大,所以A班成绩稳定些,选项B正确;下次考试A,B班的平均分不能预料,所以选项C错误;在第一次考试中,总平均分为分,选项D正确,故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,海岸公路MN的北方有一个小岛A(大小忽略不计)盛产海产品,在公路MNB处有一个海产品集散中心,点CB的正西方向10处,,计划开辟一条运输线将小岛的海产品运送到集散中心.现有两种方案:①沿线段AB开辟海上航线:②在海岸公路MN上选一点P建一个码头,先从海上运到码头,再公路MN运送到集散中心.已知海上运输、岸上运输费用分别为400/200/.

1)求方案①的运输费用;

2)请确定P点的位置,使得按方案②运送时运输费用最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.则下面结论正确的是(

A.是奇函数B.上为增函数

C.,则D.,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρsinθ2

1M为曲线C1上的动点,点P在线段OM上,且满足,求点P的轨迹C2的直角坐标方程;

2)曲线C2上两点与点Bρ2α),求△OAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《高中数学课程标准》(2017版)规定了数学直观想象学科的六大核心素养,为了比较甲、乙两名高二学生的数学核心素养水平,现以六大素养为指标对二人进行了测验,根据测验结果绘制了雷达图(如图,每项指标值满分为5分,分值高者为优),则下面叙述正确的是(注:雷达图,又可称为戴布拉图、蜘蛛网图,可用于对研究对象的多维分析)(

A.甲的直观想象素养高于乙

B.甲的数学建模素养优于数据分析素养

C.乙的数学建模素养与数学运算素养一样

D.乙的六大素养整体水平低于甲

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】台球运动已有五、六百年的历史,参与者用球杆在台上击球.若和光线一样,台球在球台上碰到障碍物后也遵从反射定律如图,有一张长方形球台ABCD,现从角落A沿角的方向把球打出去,球经2次碰撞球台内沿后进入角落C的球袋中,则的值为(

A.B.C.1D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面上一动点A的坐标为.

1)求点A的轨迹E的方程;

2)点B在轨迹E上,且纵坐标为.

i)证明直线AB过定点,并求出定点坐标;

ii)分别以AB为圆心作与直线相切的圆,两圆公共弦的中点为H,在平面内是否存在定点P,使得为定值?若存在,求出点P坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

在四棱锥中,侧面底面中点,底面是直角梯形,=90°,

I)求证:平面

II)求证:平面

III)设为侧棱上一点,,试确定的值,使得二面角45°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种水果按照果径大小可分为四类:标准果,优质果,精品果,礼品果.某采购商从采购的一批水果中随机抽取100个,利用水果的等级分类标准得到的数据如下:

等级

标准果

优质果

精品果

礼品果

个数

10

30

40

20

1)用样本估计总体,果园老板提出两种购销方案给采购商参考:

方案1:不分类卖出,单价为20/.

方案2:分类卖出,分类后的水果售价如下表:

等级

标准果

优质果

精品果

礼品果

售价(元/

16

18

22

24

从采购商的角度考虑,应该采用哪种方案较好?并说明理由.

2)从这100个水果中用分层抽样的方法抽取10个,再从抽取的10个水果中随机抽取3个,表示抽取到精品果的数量,求的分布列及数学期望.

查看答案和解析>>

同步练习册答案