【题目】某高校为增加应届毕业生就业机会,每年根据应届毕业生的综合素质和学业成绩对学生进行综合评估,已知某年度参与评估的毕业生共有2000名.其评估成绩近似的服从正态分布.现随机抽取了100名毕业生的评估成绩作为样本,并把样本数据进行了分组,绘制了如下频率分布直方图:
(1)求样本平均数和样本方差(同一组中的数据用该组区间的中点值作代表);
(2)若学校规定评估成绩超过82.7分的毕业生可参加三家公司的面试.
用样本平均数作为的估计值,用样本标准差作为的估计值.请利用估计值判断这2000名毕业生中,能够参加三家公司面试的人数;
附:若随机变量,则,.
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥A﹣BCD中,点E在BD上,EA=EB=EC=ED,BDCD,△ACD为正三角形,点M,N分别在AE,CD上运动(不含端点),且AM=CN,则当四面体C﹣EMN的体积取得最大值时,三棱锥A﹣BCD的外接球的表面积为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知的两个顶点的坐标分别为,,且所在直线的斜率之积等于,记顶点的轨迹为.
(Ⅰ)求顶点的轨迹的方程;
(Ⅱ)若直线与曲线交于两点,点在曲线上,且为的重心(为坐标原点),求证:的面积为定值,并求出该定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】新型冠状病毒肺炎疫情发生以来,在世界各地逐渐蔓延.在全国人民的共同努力和各级部门的严格管控下,我国的疫情已经得到了很好的控制.然而,小王同学发现,每个国家在疫情发生的初期,由于认识不足和措施不到位,感染人数都会出现快速的增长.下表是小王同学记录的某国连续8天每日新型冠状病毒感染确诊的累计人数.
日期代码 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
累计确诊人数 | 4 | 8 | 16 | 31 | 51 | 71 | 97 | 122 |
为了分析该国累计感染人数的变化趋势,小王同学分别用两种模型:①,②对变量和的关系进行拟合,得到相应的回归方程并进行残差分析,残差图如下(注:残差):经过计算得,,,,其中,.
(1)根据残差图,比较模型①,②的拟合效果,应该选择哪个模型?并简要说明理由;
(2)根据(1)问选定的模型求出相应的回归方程(系数均保留一位小数);
(3)由于时差,该国截止第9天新型冠状病毒感染确诊的累计人数尚未公布.小王同学认为,如果防疫形势没有得到明显改善,在数据公布之前可以根据他在(2)问求出的回归方程来对感染人数作出预测,那么估计该地区第9天新型冠状病毒感染确诊的累计人数是多少.
附:回归直线的斜率和截距的最小二乘估计公式分别为:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄元一年定期,若年利率为保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为
A.B.
C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在下列三个正方体中,均为所在棱的中点,过作正方体的截面.在各正方体中,直线与平面的位置关系描述正确的是
A. 平面的有且只有①;平面的有且只有②③
B. 平面的有且只有②;平面的有且只有①
C. .平面的有且只有①;平面的有且只有②
D. 平面的有且只有②;平面的有且只有③
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com