精英家教网 > 高中数学 > 题目详情

【题目】现抛掷两枚骰子,记事件为“朝上的2个数之和为偶数”,事件为“朝上的2个数均为偶数”,则( )

A. B. C. D.

【答案】A

【解析】

用列举法求出事件、事件所包含的基本事件的个数,根据条件概率公式,即可得到结论。

事件为“朝上的2个数之和为偶数”所包含的基本事件有:(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(1,3),(3,1),(1,5),(5,1),(3,5),(5,3),(2,4),(4,2),(2,6),(6,2),(4,6),(6,4)共18个;

事件所包含的基本事件有:(2,2),(4,4),(6,6),(2,4),(4,2),(2,6),

(6,2),(4,6),(6,4)共9个;

根据条件概率公式

故答案选A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数相邻两个最高点的距离等于

(1)求的值;

(2)求出函数的对称轴,对称中心;

(3)把函数图象上所有点的纵坐标伸长到原来的3倍(横坐标不变),得到函数,再把函数图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数,不需要过程,直接写出函数的函数关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三角形面积为为三角形三边长,为三角形内切圆半径,利用类比推理,可以得出四面体的体积为( )

A.

B.

C. 为四面体的高)

D. (其中分别为四面体四个面的面积,为四面体内切球的半径,设四面体的内切球的球心为,则球心到四个面的距离都是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元。

(1)分别写出两类产品的收益与投资额的函数关系式;

(2)该家庭现有20万元资金,全部用于理财投资,怎样分配资金才能获得最大收益?其最大收益为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若在定义域内存在实数,满足,则称为“类函数”.

(1)已知函数,试判断是否为“类函数”?并说明理由;

(2)设是定义在上的“类函数”,求是实数的最小值;

(3)若 为其定义域上的“类函数”,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论中:

定义在R上的函数f(x)在区间(-∞,0]上是增函数,在区间[0,+∞)上也是增函数,则函数f(x)R上是增函数;f(2)=f(-2),则函数f(x)不是奇函数;函数y=x-0.5(0,1)上的减函数;对应法则和值域相同的函数的定义域也相同;x0是二次函数y=f(x)的零点,m<x0<n,那么f(m)f(n)<0一定成立.

写出上述所有正确结论的序号:_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年3月3日至20日中华人民共和国第十三届全国人民代表大会第一次会议和中国人民政治协商会议第十三届全国委员会第一次会议在北京胜利召开,两会是年度中国政治生活中的一件大事,受到了举国上下和全世界的广泛关注.为及时宣传国家政策,贯彻两会精神,某校举行了全国两会知识竞赛,为了解本次竞赛成绩情况,随机抽取了部分学生的成绩(得分均为整数,满分分,最低分不低于分)进行统计,得出频率分布表如下:

组号

分组

频数

频率

第1组

第2组

第3组

第4组

第5组

合计

(1)求表中的值;

(2)若从成绩较好的第组中用分层抽样的方法抽取人担任两会知识宣传员,再从这人中随机选出人负责整理两会相关材料,求这人中至少有人来自第组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线过点,其参数方程为为参数,),以为极点,轴非负半轴为极轴,建立极坐标系,曲线的极坐标方程为

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)求已知曲线和曲线交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为,且,圆轴交于点为椭圆上的动点,面积最大值为.

(1)求圆与椭圆的方程;

(2)圆的切线交椭圆于点,求的取值范围.

查看答案和解析>>

同步练习册答案