【题目】下列命题中正确的是( )
A. 的最小值是2
B. 的最小值是2
C. 的最小值是
D. 的最大值是
【答案】C
【解析】解:当x>0时, ≥2 =2,其最小值是2;
当x=0时, 不存在;
当x<0时, =﹣(﹣x﹣ )≤﹣2 =﹣2,其最大值是﹣2.
故A不成立;
设y=x+ ,则y′=1﹣ ,当x>1时,y′>0,
∴y=x+ 在(1,+∞)内是增函数.
∵y= = + , ,
∴y= = + ≥ + = ,
∴y= 的最小值是 ,故B不正确.
∵y= = , ,
∴y= = ≥2+ = ,
∴y= 的最小值是 ,故C正确;
当x>0时, ≤2﹣2 =2﹣4 ,其最大值是 ;
当x=0时, 不存在;
x<0时, =2+4 ,其最小值是2+4 ,故D不成立.
故选C.
【考点精析】利用基本不等式对题目进行判断即可得到答案,需要熟知基本不等式:,(当且仅当时取到等号);变形公式:.
科目:高中数学 来源: 题型:
【题目】某人在静水中游泳,速度为4公里/小时,他在水流速度为4公里/小时的河中游泳.
(1)若他垂直游向河对岸,则他实际沿什么方向前进?实际前进的速度为多少?
(2)他必须朝哪个方向游,才能沿与水流垂直的方向前进?实际前进的速度为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在锐角△ABC中,内角A,B,C所对的边分别为a,b,c,已知 a=2csinA.
(1)求角C的值;
(2)若c= ,且S△ABC= ,求a+b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是函数 的导函数 的图象,对此图象,有如下结论:
①在区间(-2,1)内 是增函数;
②在区间(1,3)内 是减函数;
③在 时, 取得极大值;
④在 时, 取得极小值。
其中正确的是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设l,m是两条不同的直线,α是一个平面,则下列命题正确的是( )
A.若l⊥m,mα,则l⊥α
B.若l⊥α,l∥m,则m⊥α
C.若l∥α,mα,则l∥m
D.若l∥α,m∥α,则l∥m
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,一个圆柱形乒乓球筒,高为厘米,底面半径为厘米.球筒的上底和下底分别粘有一个乒乓球,乒乓球与球筒底面及侧面均相切(球筒和乒乓球厚度忽略不计).一个平面与两乒乓球均相切,且此平面截球筒边缘所得的图形为一个椭圆,则该椭圆的离心率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在上的函数,若,有,则称函数为定义在上的非严格单增函数;若,有,则称函数为定义在上的非严格单减函数. .
(1)若函数为定义在上的非严格单增函数,求实数的取值范围.
(2)若函数为定义在上的非严格单减函数,试解不等式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com