精英家教网 > 高中数学 > 题目详情

已知函数,在点处的切线方程为
(Ⅰ)求函数的解析式;
(Ⅱ)若对于区间上任意两个自变量的值,都有,求实数的最小值;
(Ⅲ)若过点,可作曲线的三条切线,求实数 的取值范围.

(1)
(2)4
(3)

解析试题分析:(Ⅰ)  
根据题意,得   即
解得      
(Ⅱ)令,解得
f(-1)=2,   f(1)=-2,
时, 
则对于区间[-2,2]上任意两个自变量的值,都有

所以所以的最小值为4。  
(Ⅲ)设切点为
,  切线的斜率为
 

因为过点,可作曲线的三条切线
所以方程有三个不同的实数解
即函数有三个不同的零点,




0
(0,2)
2
(2,+∞)

+
0

0
+


极大值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,其中
(Ⅰ)若,求曲线在点处的切线方程;
(Ⅱ)求在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.若,求的值;当时,求的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=x3-3ax2+3bx的图像与直线12x+y-1=0相切于点(1,-11)。
(1)求a,b的值;
(2)讨论函数f(x)的单调性。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,函数,若.
(1)求的值并求曲线在点处的切线方程;
(2)设,求上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)若函数图像上的点到直线距离的最小值为,求的值;
(2)关于的不等式的解集中的整数恰有3个,求实数的取值范围;
(3)对于函数定义域上的任意实数,若存在常数,使得都成立,则称直线为函数
“分界线”.设,试探究是否存在“分界线”?若存在,求出“分界线”的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


的单调区间
 两点连线的斜率为,问是否存在常数,且,当时有,当时有;若存在,求出,并证明之,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

有极值,
(Ⅰ)求的取值范围;
(Ⅱ)求极大值点和极小值点.

查看答案和解析>>

同步练习册答案