精英家教网 > 高中数学 > 题目详情
11.已知函数$f(x)=sin(2x+\frac{7π}{4})+cos(2x-\frac{3π}{4})$,x∈R.
(1)求f(x)的最小正周期和单调增区间;
(2)已知$cos(β-α)=\frac{4}{5}$,$cos(β+α)=-\frac{4}{5}$,$0<α<β≤\frac{π}{2}$,求f(β).

分析 (1)利用诱导公式化简函数解析式为f(x)=2sin(2x-$\frac{π}{4}$),利用三角函数周期公式可求最小正周期,利用$2kπ-\frac{π}{2}≤2x-\frac{π}{4}≤2kπ+\frac{π}{2}$,可求函数的单调增区间.
(2)利用两角和与差的余弦函数公式化简可得2cosβcosα=0,结合角的范围可求$β=\frac{π}{2}$,代入即可得解.

解答 解:(1)因为$f(x)=sin(2x+\frac{7π}{4}-2π)+sin(2x-\frac{3π}{4}+\frac{π}{2})$=$sin(2x-\frac{π}{4})+sin(2x-\frac{π}{4})=2sin(2x-\frac{π}{4})$,
所以T=π,
由$2kπ-\frac{π}{2}≤2x-\frac{π}{4}≤2kπ+\frac{π}{2}$,得单调增区间为$[{kπ-\frac{π}{8},kπ+\frac{3π}{8}}]$,k∈Z.
(2)∵$cos(β-α)=\frac{4}{5}$,$cos(β+α)=-\frac{4}{5}$,
∴$cosβcosα+sinβsinα=\frac{4}{5}$,$cosβcosα-sinβsinα=-\frac{4}{5}$,
两式相加,得2cosβcosα=0,
∵$0<α<β≤\frac{π}{2}$,
∴$β=\frac{π}{2}$,
由(1)知$f(β)=2sin(2β-\frac{π}{4})=\sqrt{2}$.

点评 本题主要考查了诱导公式,两角和与差的余弦函数公式在三角函数化简求值中的应用,考查了正弦函数的图象和性质及三角函数周期公式的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2.
(I)求异面直线AC与B1D所成角的余弦值;
(Ⅱ)设M是线段B1D上一点,在长方体ABCD-A1B1C1D1内随机选取一点,若该点取自于三棱锥M-ACD内的概率为$\frac{1}{18}$,试确定点M的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数$f(x)=1+\sqrt{x}$,$g(x)=\sqrt{1-x}-\sqrt{x}$,则f(x)+g(x)=1+$\sqrt{1-x}$,0≤x≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设常数b∈R.若函数$y=x+\frac{2^b}{x}(x>0)$在(0,4]上是减函数,在[4,+∞)上是增函数,则b=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若直角坐标平面内两点A,B满足:
①A,B均在函数f(x)的图象上;
②A,B关于原点对称.
则称点对[A,B]为函数f(x)的一对“匹配点对”(点对[A,B]与[B,A]视作同一对).
若函数f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}x,x>0}\\{-{x}^{2}-4x,x≤0}\end{array}\right.$,则此函数的“匹配点对”共有(  )对.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知抛物线C:y2=4x,焦点为F,过点P(-1,0)作斜率为k(k>0)的直线l与抛物线C交于A,B两点,直线AF,BF分别交抛物线C于M,N两点,若$\frac{|AF|}{|FM|}$+$\frac{|BF|}{|FN|}$=18,则k=$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数y=$\frac{{2}^{x+1}}{{2}^{x}+1}$与函数y=$\frac{x+1}{x}$的图象共有k(k∈N*)个公共点,A1(x1,y1),A2(x2,y2),…,Ak(xk,yk),则$\sum_{i=1}^{k}$(xi+yi)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点M(2,1),且离心率为$\frac{\sqrt{3}}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设A(0,-1),直线l与椭圆C交于P,Q两点,且|AP|=|AQ|,当△OPQ(O为坐标原点)的面积S最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=\frac{1+a}{x}(a∈R)$.
(Ⅰ) 当a=0时,求曲线f (x)在x=1处的切线方程;
(Ⅱ) 设函数h(x)=alnx-x-f(x),求函数h (x)的极值;
(Ⅲ) 若g(x)=alnx-x在[1,e](e=2.718 28…)上存在一点x0,使得g(x0)≥f(x0)成立,求a的取值范围.

查看答案和解析>>

同步练习册答案