精英家教网 > 高中数学 > 题目详情
13.某几何体的三视图如图,其正视图中的曲线部分为半圆,则该几何体的体积是(  )
A.4+$\frac{3}{2}$πB.6+$\frac{3}{2}$πC.6+3πD.12+$\frac{3}{2}$π

分析 由已知中的三视图可得:该几何体是一个以正视图为底面的柱体,代入柱体体积公式,可得答案.

解答 解:由已知中的三视图可得:该几何体是一个以正视图为底面的柱体,
(也可以看成一个三棱柱与半圆柱的组合体),
其底面面积S=$\frac{1}{2}$×2×2+$\frac{1}{2}$π=2+$\frac{1}{2}$π,
高h=3,
故体积V=Sh=6+$\frac{3}{2}$π,
故选:B.

点评 本题考查的知识点是棱柱的体积和表面积,圆柱的体积和表面积,简单几何体的三视图,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.若在区间[a,a+2]上,函数f(x)=2x-5的最小值不小于g(x)=4x-x2的最大值,则正数a的取值范围为(  )
A.[3,+∞)B.(0,3)C.(3,+∞)D.[3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知f′(x)是f(x)的导数,且y=xf′(x)的图象如图所示,则下列关于f(x)说法正确的是(  )
A.在(-∞,0)上是增函数B.在(-1,1)上是增函数
C.在(-1,0)上是增函数D.在(1,+∞)上是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知向量$\overrightarrow a=({2\sqrt{2},2})$,$\overrightarrow b=({0,2})$,$\overrightarrow c=({m,\sqrt{2}})$,且$({\overrightarrow a+2\overrightarrow b})⊥\overrightarrow c$,则实数m=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若函数f(x)=$\left\{\begin{array}{l}{2x(0≤x≤1)}\\{{x}^{2}-4x+m(x>1)}\end{array}\right.$的值域为[0,+∞),则m的取值范围是m≥4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若a是集合{1,2,3,4,5,6,7}中任意选取的一个元素,则圆C:x2+(y-2)2=1与圆O:x2+y2=a2内含的概率为$\frac{4}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=$\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$是(  )
A.奇函数B.偶函数
C.非奇非偶函数D.既是奇函数又是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=lnx-cx(c∈R)
(1)讨论函数f(x)的单调性;
(2)设函数f(x)有两个相异零点x1,x2,求证:${x_1}•{x_2}>{e^2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.计算(式中各字母均为正数)
(1)$(\frac{{8{s^6}{t^{-3}}}}{{125{r^9}}}{)^{-\frac{2}{3}}}$
(2)$(3{x^{\frac{1}{4}}}+2{y^{-\frac{1}{2}}})(3{x^{\frac{1}{4}}}-2{y^{-\frac{1}{2}}})$.

查看答案和解析>>

同步练习册答案